21 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Multi-Base Calculator System
Technical Manual and Documentation
Document Version: 1.0 Publication Date: October 24, 2025 Target Platform: NXP LPC1768 ARM Cortex-M3 Microcontroller Document Status: Final Release
Table of Contents
- System Overview
- Hardware Architecture
- Pin Configuration
- Software Architecture
- Functional Specification
- Code Documentation
- Operating Procedures
- Technical Reference
1. System Overview
1.1 Executive Summary
This document describes a multi-base arithmetic calculator implemented on the LPC1768 ARM Cortex-M3 microcontroller. The system performs calculations in Binary (Base 2), Octal (Base 8), Decimal (Base 10), and Hexadecimal (Base 16) number systems.
1.2 System Features
- Four numerical base modes with dynamic switching
- 4×4 matrix keypad for input
- 16×2 LCD display for status and results
- Single-digit 7-segment display for quick reference
- Three arithmetic operations: Addition, Subtraction, Multiplication
- Shift-key operator access mechanism
- Hardware debouncing for stable input
1.3 System Architecture
┌──────────────────────────────────────────┐
│         LPC1768 Microcontroller          │
│            (ARM Cortex-M3)               │
├──────────┬──────────────┬────────────────┤
│          │              │                │
│  Input   │  Processing  │    Output      │
│ Keypad   │  Calculator  │  LCD Display   │
│  (4×4)   │    Logic     │  7-Segment     │
│  Button  │   Base Conv. │                │
└──────────┴──────────────┴────────────────┘
1.4 Operating Modes
| Mode | Base | Valid Digits | Application | 
|---|---|---|---|
| DEC | 10 | 0-9 | General arithmetic | 
| BIN | 2 | 0-1 | Digital logic | 
| OCT | 8 | 0-7 | Unix permissions | 
| HEX | 16 | 0-9, A-F | Memory addressing | 
2. Hardware Architecture
2.1 Component Specifications
Microcontroller (LPC1768):
- ARM Cortex-M3 core, 100 MHz
- 512 KB Flash, 32 KB SRAM
- 70 GPIO pins (5V tolerant)
- 3.3V operating voltage
Input Subsystem:
- 4×4 matrix keypad (16 keys)
- Mode selection button (P2.12)
- Software debouncing (9ms effective)
Output Subsystem:
- 16×2 LCD (HD44780-compatible, 4-bit mode)
- 7-segment LED display (single digit)
- Real-time display updates
2.2 System Block Diagram
Input Processing          Calculator Core         Output System
┌────────────┐           ┌──────────────┐        ┌──────────────┐
│  Keypad    │──────────>│ State        │───────>│ LCD Display  │
│  Scanning  │           │ Machine      │        │ (16×2)       │
│            │           │              │        │              │
│  Mode      │──────────>│ Arithmetic   │───────>│ 7-Segment    │
│  Button    │           │ Engine       │        │ (Single)     │
│            │           │              │        │              │
│  Debounce  │           │ Base         │        │ Feedback     │
│  Logic     │           │ Conversion   │        │ Messages     │
└────────────┘           └──────────────┘        └──────────────┘
3. Pin Configuration
3.1 Connector Overview
The LPC1768 board provides four 10-pin FRC connectors (CNA, CNB, CNC, CND) for peripheral interfacing.
3.2 Connector CNA - 7-Segment Display
Function: Seven-segment LED display driver (P0.4-P0.11)
| Pin | LPC1768 | Port.Bit | Function | Direction | 
|---|---|---|---|---|
| 1 | 81 | P0.4 | Segment A | Output | 
| 2 | 80 | P0.5 | Segment B | Output | 
| 3 | 79 | P0.6 | Segment C | Output | 
| 4 | 78 | P0.7 | Segment D | Output | 
| 5 | 77 | P0.8 | Segment E | Output | 
| 6 | 76 | P0.9 | Segment F | Output | 
| 7 | 48 | P0.10 | Segment G | Output | 
| 8 | 49 | P0.11 | Decimal Point | Output | 
| 10 | - | GND | Ground | - | 
7-Segment Encoding Array:
const unsigned char seven_seg[16] = {
    0x3F, 0x06, 0x5B, 0x4F,  // 0-3
    0x66, 0x6D, 0x7D, 0x07,  // 4-7
    0x7F, 0x6F, 0x77, 0x7C,  // 8-B
    0x39, 0x5E, 0x79, 0x71   // C-F
};
3.3 Connector CNB - Display Enable and Mode Button
Function: 7-segment enable and mode selection (P1.23, P2.12)
| Pin | LPC1768 | Port.Bit | Function | Direction | 
|---|---|---|---|---|
| 1 | 37 | P1.23 | 7-Seg Digit Enable | Output | 
| 7 | 51 | P2.12 | Mode Button | Input (Pull-up) | 
| 10 | - | GND | Ground | - | 
3.4 Connector CNC - Keypad Matrix
Function: 4×4 keypad interface (P0.15-P0.22)
| Pin | LPC1768 | Port.Bit | Function | Direction | 
|---|---|---|---|---|
| 1 | 62 | P0.15 | Column 0 | Output | 
| 2 | 63 | P0.16 | Column 1 | Output | 
| 3 | 61 | P0.17 | Column 2 | Output | 
| 4 | 60 | P0.18 | Column 3 | Output | 
| 5 | 59 | P0.19 | Row 0 | Input (Pull-up) | 
| 6 | 58 | P0.20 | Row 1 | Input (Pull-up) | 
| 7 | 57 | P0.21 | Row 2 | Input (Pull-up) | 
| 8 | 56 | P0.22 | Row 3 | Input (Pull-up) | 
| 10 | - | GND | Ground | - | 
Keypad Layout:
     Col0   Col1   Col2   Col3
      │      │      │      │
Row0──┼──0───┼──1───┼──2───┼──3──
Row1──┼──4───┼──5───┼──6───┼──7──
Row2──┼──8───┼──9───┼──A───┼──B──
Row3──┼──C───┼──D───┼──E───┼──F──
Key Index Calculation: Key = (Column × 4) + Row
3.5 Connector CND - LCD Display
Function: HD44780 LCD interface in 4-bit mode (P0.23-P0.28)
| Pin | LPC1768 | Port.Bit | Function | Direction | 
|---|---|---|---|---|
| 1 | 9 | P0.23 | LCD D4 | Output | 
| 2 | 8 | P0.24 | LCD D5 | Output | 
| 3 | 7 | P0.25 | LCD D6 | Output | 
| 4 | 6 | P0.26 | LCD D7 | Output | 
| 5 | 25 | P0.27 | LCD RS | Output | 
| 6 | 24 | P0.28 | LCD EN | Output | 
| 10 | - | GND | Ground | - | 
LCD Control Signals:
- RS (Register Select): 0 = Command, 1 = Data
- EN (Enable): Falling edge latches data
- D4-D7: 4-bit data interface
3.6 Pin Mapping Summary
| Function | Pins | Connector | Direction | Count | 
|---|---|---|---|---|
| 7-Segment Data | P0.4-P0.11 | CNA | Output | 8 | 
| Keypad Columns | P0.15-P0.18 | CNC | Output | 4 | 
| Keypad Rows | P0.19-P0.22 | CNC | Input | 4 | 
| LCD Data | P0.23-P0.26 | CND | Output | 4 | 
| LCD Control | P0.27-P0.28 | CND | Output | 2 | 
| 7-Seg Enable | P1.23 | CNB | Output | 1 | 
| Mode Button | P2.12 | CNB | Input | 1 | 
| Total | - | - | - | 24 | 
4. Software Architecture
4.1 System Design Overview
The software follows a polled input, state-based architecture with three primary layers:
- Application Layer: User interface and calculator logic
- Hardware Abstraction: LCD, keypad, and display control functions
- Hardware Access: Direct register manipulation
4.2 State Machine
┌──────────┐
│   INIT   │
└─────┬────┘
      │
      ▼
┌──────────┐     ┌─────────────┐
│   IDLE   │────>│ DIGIT INPUT │
│  READY   │     └──────┬──────┘
└─────┬────┘            │
      │                 ▼
      │           ┌──────────────┐
      │           │ ACCUMULATE   │
      │           │   NUMBER     │
      │           └──────┬───────┘
      │                  │
      ├──────────────────┤
      │                  │
      ▼                  ▼
┌──────────┐      ┌──────────────┐
│  SHIFT   │────> │  OPERATOR    │
│  DETECT  │      │   PENDING    │
└──────────┘      └──────┬───────┘
      │                  │
      ▼                  ▼
┌──────────┐      ┌──────────────┐
│   MODE   │      │  CALCULATE   │
│  CHANGE  │      │   RESULT     │
└──────────┘      └──────────────┘
4.3 Global State Variables
// Calculator state
unsigned int current_base;     // Active base (2, 8, 10, 16)
unsigned int input_num;        // Current input number
unsigned int stored_num;       // First operand
unsigned int operation;        // Pending operation (0-3)
unsigned int result;           // Calculation result
// Input state
unsigned int key, last_key;    // Key scan results
unsigned int stable;           // Debounce counter
unsigned int shift_active;     // Shift key flag
// Mode button state
unsigned int button_state, last_button_state;
unsigned int button_stable;    // Button debounce counter
4.4 Constant Definitions
// Operational modes
#define MODE_BIN  2
#define MODE_OCT  8
#define MODE_DEC  10
#define MODE_HEX  16
// Operations
#define OP_NONE  0
#define OP_ADD   1
#define OP_SUB   2
#define OP_MUL   3
// Hardware pins
#define COL_BASE 15
#define ROW_BASE 19
#define COL_MASK (0x0F << COL_BASE)
#define ROW_MASK (0x0F << ROW_BASE)
#define SEG_SHIFT 4
#define DIGIT_EN (1<<23)
#define LCD_DATA_SHIFT 23
#define LCD_DATA_MASK (0x0F << LCD_DATA_SHIFT)
#define LCD_RS (1<<27)
#define LCD_EN (1<<28)
#define MODE_BUTTON (1<<12)
4.5 Main Program Flow
int main(void){
    // Initialize hardware
    configure_pins();
    configure_gpio();
    lcd_init();
    // Initial display
    display_mode();
    display_input();
    // Main loop
    for(;;){
        // Input acquisition
        shift_active = is_key0_pressed();
        key = scan_keypad();
        button_state = scan_mode_button();
        // Debouncing
        debounce_keypad();
        debounce_button();
        // Mode change
        if(stable_mode_press()){
            cycle_mode();
        }
        // Key processing
        if(stable_key_press()){
            if(shift_active){
                process_operator(key);
            } else {
                process_digit(key);
            }
        }
        // Display update
        update_7segment();
        delay(3000);  // 3ms scan interval
    }
}
5. Functional Specification
5.1 Numerical Base Modes
| Mode | Base | Valid Keys | Input Example | Display | 
|---|---|---|---|---|
| DEC | 10 | 0-9 | 123 | "123" | 
| BIN | 2 | 0-1 | 1011 | "1011" | 
| OCT | 8 | 0-7 | 177 | "177" | 
| HEX | 16 | 0-9, A-F | 1A2F | "1A2F" | 
Input Accumulation Algorithm:
// For any base:
input_num = input_num * current_base + key_value;
// Example (HEX): A, B → AB
// Step 1: 0 * 16 + 10 = 10
// Step 2: 10 * 16 + 11 = 171 (0xAB)
5.2 Operator Functions
Shift Key Paradigm: Key 0 acts as a modifier for operator access.
| Key Combo | Function | Operation | Display | 
|---|---|---|---|
| 0 + B | Addition | stored + input | "Op: +" | 
| 0 + C | Clear | Reset all | "Op: CLR" | 
| 0 + D | Subtraction | stored - input | "Op: -" | 
| 0 + E | Multiplication | stored × input | "Op: *" | 
| 0 + F | Equals | Calculate result | "Res: XXX" | 
Operation Sequence:
1. Enter first number
2. Hold Key 0 + Press operator (B/D/E)
3. Enter second number
4. Hold Key 0 + Press F (equals)
5. View result on LCD
5.3 Input Processing
Debouncing: Key must be stable for 3 consecutive scans (9ms total).
if(key == last_key){
    if(stable < 5) stable++;
} else {
    last_key = key;
    stable = 0;
}
if(stable == 3 && key != 0xFF){
    process_key(key);
    stable = 5;  // Lock-out
}
Digit Validation:
unsigned int is_valid_digit(unsigned int key){
    if(key >= 16) return 0;
    if(current_base == MODE_BIN && key >= 2) return 0;
    if(current_base == MODE_OCT && key >= 8) return 0;
    if(current_base == MODE_DEC && key >= 10) return 0;
    return 1;  // Valid in HEX
}
6. Code Documentation
6.1 Peripheral Control Functions
Keypad Scanning
unsigned int scan_keypad(void){
    unsigned int col, row, row_bits;
    for(col = 0; col < 4; col++){
        LPC_GPIO0->FIOSET = COL_MASK;         // All columns HIGH
        delay(50);
        LPC_GPIO0->FIOCLR = (1 << (COL_BASE + col));  // Pull column LOW
        delay(200);
        row_bits = (LPC_GPIO0->FIOPIN & ROW_MASK) >> ROW_BASE;
        if(row_bits != 0x0F){  // Key detected
            for(row = 0; row < 4; row++){
                if((row_bits & (1 << row)) == 0){
                    LPC_GPIO0->FIOSET = COL_MASK;
                    return (col * 4) + row;
                }
            }
        }
    }
    LPC_GPIO0->FIOSET = COL_MASK;
    return 0xFF;  // No key pressed
}
Shift Key Detection
unsigned int is_key0_pressed(void){
    unsigned int row_bits;
    // Check Key 0 (Column 0, Row 0)
    LPC_GPIO0->FIOSET = COL_MASK;
    delay(50);
    LPC_GPIO0->FIOCLR = (1 << COL_BASE);
    delay(200);
    row_bits = (LPC_GPIO0->FIOPIN & ROW_MASK) >> ROW_BASE;
    LPC_GPIO0->FIOSET = COL_MASK;
    return ((row_bits & 0x01) == 0) ? 1 : 0;
}
6.2 LCD Control Functions
LCD Initialization (4-bit Mode)
void lcd_init(void){
    lcd_delay(5000000);  // Power-on wait
    // 8-bit mode initialization
    lcd_write_nibble(0x03, 0);
    lcd_delay(500000);
    lcd_write_nibble(0x03, 0);
    lcd_delay(500000);
    lcd_write_nibble(0x03, 0);
    lcd_delay(500000);
    // Switch to 4-bit mode
    lcd_write_nibble(0x02, 0);
    lcd_delay(500000);
    lcd_cmd(0x28);  // 4-bit, 2 lines, 5x8 font
    lcd_cmd(0x0C);  // Display ON, cursor OFF
    lcd_cmd(0x01);  // Clear display
    lcd_delay(500000);
    lcd_cmd(0x06);  // Entry mode: increment
}
LCD Communication
void lcd_write_nibble(unsigned char nibble, unsigned char is_data){
    unsigned long temp;
    temp = (nibble & 0x0F) << LCD_DATA_SHIFT;
    LPC_GPIO0->FIOPIN = (LPC_GPIO0->FIOPIN & ~LCD_DATA_MASK) | temp;
    if(is_data)
        LPC_GPIO0->FIOSET = LCD_RS;  // Data mode
    else
        LPC_GPIO0->FIOCLR = LCD_RS;  // Command mode
    LPC_GPIO0->FIOSET = LCD_EN;      // EN pulse
    lcd_delay(100);
    LPC_GPIO0->FIOCLR = LCD_EN;
    lcd_delay(500000);
}
void lcd_cmd(unsigned char cmd){
    lcd_write_nibble(cmd >> 4, 0);     // High nibble
    lcd_write_nibble(cmd & 0x0F, 0);   // Low nibble
}
void lcd_data(unsigned char data){
    lcd_write_nibble(data >> 4, 1);    // High nibble
    lcd_write_nibble(data & 0x0F, 1);  // Low nibble
}
6.3 Display Functions
Number Display (Base Conversion)
void lcd_print_num(unsigned int num, unsigned int base){
    char buffer[17];
    int i = 0;
    if(num == 0){
        lcd_data('0');
        return;
    }
    // Extract digits in reverse
    while(num > 0 && i < 16){
        unsigned int digit = num % base;
        if(digit < 10)
            buffer[i++] = '0' + digit;
        else
            buffer[i++] = 'A' + (digit - 10);
        num = num / base;
    }
    // Print in correct order
    while(i > 0){
        lcd_data(buffer[--i]);
    }
}
Mode Display
void display_mode(void){
    lcd_cmd(0x80);  // Line 1
    lcd_print_str("Mode: ");
    if(current_base == MODE_BIN)
        lcd_print_str("BIN     ");
    else if(current_base == MODE_OCT)
        lcd_print_str("OCT     ");
    else if(current_base == MODE_DEC)
        lcd_print_str("DEC     ");
    else
        lcd_print_str("HEX     ");
}
6.4 GPIO Configuration
void configure_system(void){
    // Pin function selection (GPIO mode)
    LPC_PINCON->PINSEL0 = 0;
    LPC_PINCON->PINSEL1 = 0;
    LPC_PINCON->PINSEL3 = 0;
    LPC_PINCON->PINSEL4 = 0;
    // GPIO direction setup
    LPC_GPIO0->FIODIR |= COL_MASK;            // Columns: output
    LPC_GPIO0->FIODIR &= ~ROW_MASK;           // Rows: input
    LPC_GPIO0->FIODIR |= (0xFF << SEG_SHIFT); // Segments: output
    LPC_GPIO0->FIODIR |= LCD_DATA_MASK | LCD_RS | LCD_EN;
    LPC_GPIO1->FIODIR |= DIGIT_EN;
    LPC_GPIO2->FIODIR &= ~MODE_BUTTON;
    // Initial states
    LPC_GPIO0->FIOSET = COL_MASK;  // Columns inactive
}
7. Operating Procedures
7.1 Basic Operation
Power-On Sequence:
- System initializes, LCD displays: "Mode: DEC" / "Inp: 0"
- Select base using P2.12 button (DEC → BIN → OCT → HEX → DEC)
- Begin entering numbers
Numeric Input:
- Press digit keys (0-9, A-F as valid for current base)
- LCD shows accumulated number: "Inp: XXX"
- 7-segment displays last hexadecimal digit
Arithmetic Operations:
- Enter first number
- Hold Key 0, press operator key (B/D/E)
- LCD shows: "Op: +/-/*"
- Enter second number
- Hold Key 0, press F (equals)
- LCD shows: "Res: XXX"
Clear Function:
- Hold Key 0, press C
- All values reset to zero
- Current mode preserved
7.2 Usage Examples
Example 1: Decimal Addition (25 + 17)
1. Mode: DEC
2. Press 2, 5 → "Inp: 25"
3. Hold 0 + B → "Op: +"
4. Press 1, 7 → "Inp: 17"
5. Hold 0 + F → "Res: 42"
Example 2: Hexadecimal Calculation (AB + 1F)
1. Press P2.12 until "Mode: HEX"
2. Press A, B → "Inp: AB"
3. Hold 0 + B → "Op: +"
4. Press 1, F → "Inp: 1F"
5. Hold 0 + F → "Res: CA"
Example 3: Binary Multiplication (101 × 11)
1. Select "Mode: BIN"
2. Press 1, 0, 1 → "Inp: 101"
3. Hold 0 + E → "Op: *"
4. Press 1, 1 → "Inp: 11"
5. Hold 0 + F → "Res: 1111"
7.3 Key Reference
Numeric Input:
- Keys 0-9: Decimal digits (base-dependent)
- Keys A-F: Hexadecimal digits (HEX mode only)
Operators (Hold Key 0 + Press):
- Key B: Addition (+)
- Key C: Clear (CLR)
- Key D: Subtraction (-)
- Key E: Multiplication (×)
- Key F: Equals (=)
Mode Control:
- P2.12 Button: Cycle through bases
7.4 System Limitations
| Parameter | Limit | Notes | 
|---|---|---|
| Maximum Input | 65535 | 16-bit unsigned integer | 
| Display Digits | Variable | Based on current base | 
| Overflow Behavior | Wrap-around | Result % 65536 | 
| Underflow Behavior | Wrap-around | Unsigned arithmetic | 
| Operations | 3 | Add, Subtract, Multiply | 
| Decimal Support | No | Integer only | 
8. Technical Reference
8.1 LCD Command Set
| Command | Code | Function | 
|---|---|---|
| Clear Display | 0x01 | Clear all, cursor home | 
| Return Home | 0x02 | Cursor to position 0 | 
| Entry Mode | 0x06 | Increment, no shift | 
| Display Control | 0x0C | Display ON, cursor OFF | 
| Function Set | 0x28 | 4-bit, 2 lines, 5×8 | 
| Set Line 1 | 0x80 | Cursor to line 1 | 
| Set Line 2 | 0xC0 | Cursor to line 2 | 
8.2 Timing Specifications
| Parameter | Value | Unit | 
|---|---|---|
| Keypad Scan Interval | 3 | ms | 
| Debounce Time | 9 | ms | 
| LCD Enable Pulse | 100 | μs | 
| LCD Processing Delay | 500 | ms (software) | 
| 7-Segment Update | Real-time | - | 
8.3 Memory Usage
| Component | Size | 
|---|---|
| Program Code | ~4 KB | 
| Global Variables | 48 bytes | 
| Stack Usage | ~512 bytes | 
| LCD Buffer | None (direct write) | 
8.4 Power Consumption
| Component | Typical | Maximum | 
|---|---|---|
| LPC1768 MCU | 50 mA | 100 mA | 
| LCD Display | 2 mA | 5 mA | 
| LCD Backlight | 20 mA | 50 mA | 
| 7-Segment | 10 mA | 80 mA | 
| Total System | 82 mA | 235 mA | 
8.5 Error Handling
Invalid Input: Silently ignored (no response)
Overflow: Modulo arithmetic applied
if(input_num > 65535)
    input_num = input_num % 65536;
Underflow: Unsigned wrap-around
// Example: 5 - 10 = 65531 (not -5)
Appendices
A. Complete Code Listing
The complete source code is provided in the implementation section of this document.
B. Troubleshooting Guide
| Issue | Cause | Solution | 
|---|---|---|
| No keypad response | GPIO configuration | Verify COL_MASK and ROW_MASK | 
| LCD blank | Initialization failure | Check timing delays | 
| Incorrect display | Base mismatch | Verify current_base value | 
| Mode button stuck | Debounce too short | Increase button_stable threshold | 
C. Revision History
| Version | Date | Changes | 
|---|---|---|
| 1.0 | 2025-10-24 | Initial release |