This commit is contained in:
sherlock 2025-10-29 14:34:14 +05:30
parent e3624f8853
commit 1d9b668496

View file

@ -2,24 +2,26 @@
#include <stdbool.h> #include <stdbool.h>
/* =================================================== /* ===================================================
* SMART CALCULATOR - LPC1768 (Final v2) * SMART MULTIBASE CALCULATOR LPC1768
* Supports BIN, BASE4, OCT, DEC, and HEX * Supports BIN, BASE4, OCT, DEC, HEX with
* with 4x4 keypad, LCD, and 7-seg status display. * keypad, LCD, and 7segment status.
* *
* Features: * Features:
* - Base-aware arithmetic and I/O * SysTick 1 ms hardware timing
* - HEX: double MODE button press within 2s = operator mode * HEX: double MODE press <2 s operator mode
* - Hardware 1ms timing via SysTick * Signed decimal arithmetic; modular in other bases
* =================================================== * ===================================================
*/ */
/* 7-Segment patterns for 0F */ /* 7segment patterns for 0F (commoncathode encoding) */
const unsigned char seven_seg[16] = { const unsigned char seven_seg[16] = {
0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x3F, 0x06, 0x5B, 0x4F,
0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71 0x66, 0x6D, 0x7D, 0x07,
0x7F, 0x6F, 0x77, 0x7C,
0x39, 0x5E, 0x79, 0x71
}; };
/* ===== Pin & Mode Definitions ===== */ /* ===== Pin & Mode Defines ===== */
#define COL_BASE 15 #define COL_BASE 15
#define ROW_BASE 19 #define ROW_BASE 19
#define COL_MASK (0x0F << COL_BASE) #define COL_MASK (0x0F << COL_BASE)
@ -35,7 +37,7 @@ const unsigned char seven_seg[16] = {
#define MODE_BUTTON (1 << 12) #define MODE_BUTTON (1 << 12)
/* Supported Bases */ /* Modes / Bases */
#define MODE_BIN 2 #define MODE_BIN 2
#define MODE_BASE4 4 #define MODE_BASE4 4
#define MODE_OCT 8 #define MODE_OCT 8
@ -50,32 +52,31 @@ const unsigned char seven_seg[16] = {
#define OP_CLR 4 #define OP_CLR 4
#define OP_RES 5 #define OP_RES 5
/* ===== Global Variables ===== */ /* ===== Globals ===== */
unsigned int current_base; int input_num, stored_num, result;
unsigned int input_num;
unsigned int stored_num;
unsigned int result;
unsigned int operation; unsigned int operation;
unsigned int current_base;
unsigned char hex_op_mode;
unsigned char result_displayed; unsigned char result_displayed;
unsigned int key, last_key, stable; unsigned int key, last_key, stable;
unsigned int button_state, last_button_state, button_stable; unsigned int button_state, last_button_state, button_stable;
unsigned char hex_operator_mode;
unsigned long last_mode_press_time; unsigned long last_mode_press_time;
/* Millisecond counter via SysTick */ /* ===== System tick counter ===== */
volatile unsigned long sys_millis = 0; volatile unsigned long sys_millis = 0;
/* ===== Function Declarations ===== */ /* ===== Forward Declarations ===== */
void delay(volatile unsigned int d); void delay(volatile unsigned int d);
void lcd_delay(unsigned long r); void lcd_delay(unsigned long r);
void lcd_write_nibble(unsigned char nibble, unsigned char is_data); void lcd_write_nibble(unsigned char nibble, unsigned char is_data);
void lcd_cmd(unsigned char cmd); void lcd_cmd(unsigned char cmd);
void lcd_data(unsigned char data); void lcd_data(unsigned char data);
void lcd_init(void); void lcd_init(void);
void lcd_print_str(const char *str); void lcd_print_str(const char *s);
void lcd_print_num(unsigned int num, unsigned int base); void lcd_print_num(int num, unsigned int base);
void display_mode(void); void display_mode(void);
void display_input(void); void display_input(void);
void display_result(void); void display_result(void);
@ -87,373 +88,241 @@ void handle_mode_button(void);
void operate(unsigned int op); void operate(unsigned int op);
void perform_operation(void); void perform_operation(void);
unsigned char is_operator_active(unsigned int key); unsigned char is_operator_active(unsigned int key);
unsigned int base_arith(unsigned int a, unsigned int b, int base_arith(int a, int b, unsigned int op, unsigned int base);
unsigned int op, unsigned int base);
unsigned long millis(void); unsigned long millis(void);
/* ===== Utility ===== */ /* =================================================== */
void delay(volatile unsigned int d) { /* ===== Implementation */
while (d--) __NOP(); /* =================================================== */
void delay(volatile unsigned int d){ while(d--) __NOP(); }
void lcd_delay(unsigned long r){ volatile unsigned long i; for(i=0;i<r;i++); }
/* ---- SysTick (1 ms) ---- */
void SysTick_Handler(void){ sys_millis++; }
unsigned long millis(void){ return sys_millis; }
/* ---- LCD primitives ---- */
void lcd_write_nibble(unsigned char nibble, unsigned char is_data){
unsigned long temp=(nibble&0x0F)<<LCD_DATA_SHIFT;
LPC_GPIO0->FIOPIN=(LPC_GPIO0->FIOPIN&~LCD_DATA_MASK)|temp;
if(is_data) LPC_GPIO0->FIOSET=LCD_RS; else LPC_GPIO0->FIOCLR=LCD_RS;
LPC_GPIO0->FIOSET=LCD_EN; lcd_delay(100);
LPC_GPIO0->FIOCLR=LCD_EN; lcd_delay(250000);
} }
void lcd_cmd(unsigned char c){ lcd_write_nibble(c>>4,0); lcd_write_nibble(c,0); }
void lcd_data(unsigned char d){ lcd_write_nibble(d>>4,1); lcd_write_nibble(d,1); }
void lcd_delay(unsigned long r) { void lcd_init(void){
volatile unsigned long i;
for (i = 0; i < r; i++)
;
}
/* ===== SysTick Millisecond Tracker ===== */
void SysTick_Handler(void) {
sys_millis++;
}
unsigned long millis(void) {
return sys_millis;
}
/* ===== LCD Control ===== */
void lcd_write_nibble(unsigned char nibble, unsigned char is_data) {
unsigned long temp;
temp = (nibble & 0x0F) << LCD_DATA_SHIFT;
LPC_GPIO0->FIOPIN = (LPC_GPIO0->FIOPIN & ~LCD_DATA_MASK) | temp;
if (is_data)
LPC_GPIO0->FIOSET = LCD_RS;
else
LPC_GPIO0->FIOCLR = LCD_RS;
LPC_GPIO0->FIOSET = LCD_EN;
lcd_delay(100);
LPC_GPIO0->FIOCLR = LCD_EN;
lcd_delay(250000);
}
void lcd_cmd(unsigned char cmd) {
lcd_write_nibble(cmd >> 4, 0);
lcd_write_nibble(cmd, 0);
}
void lcd_data(unsigned char data) {
lcd_write_nibble(data >> 4, 1);
lcd_write_nibble(data, 1);
}
void lcd_init(void) {
lcd_delay(5000000); lcd_delay(5000000);
lcd_write_nibble(0x03, 0); lcd_write_nibble(0x03,0); lcd_delay(500000);
lcd_delay(500000); lcd_write_nibble(0x03,0); lcd_delay(500000);
lcd_write_nibble(0x03, 0); lcd_write_nibble(0x03,0); lcd_delay(500000);
lcd_delay(500000); lcd_write_nibble(0x02,0); lcd_delay(500000);
lcd_write_nibble(0x03, 0); lcd_cmd(0x28); lcd_cmd(0x0C); lcd_cmd(0x01); lcd_delay(500000); lcd_cmd(0x06);
lcd_delay(500000);
lcd_write_nibble(0x02, 0);
lcd_delay(500000);
lcd_cmd(0x28);
lcd_cmd(0x0C);
lcd_cmd(0x01);
lcd_delay(500000);
lcd_cmd(0x06);
} }
void lcd_print_str(const char *str) { void lcd_print_str(const char *s){ while(*s) lcd_data(*s++); }
while (*str)
lcd_data(*str++); void lcd_print_num(int num, unsigned int base){
char buf[17]; int i=0; unsigned int unum;
if(base==MODE_DEC && num<0){ lcd_data('-'); num=-num; }
unum=(unsigned int)num;
if(unum==0){ lcd_data('0'); return; }
while(unum>0 && i<16){
unsigned int d=unum%base;
buf[i++]=(d<10)?('0'+d):('A'+d-10);
unum/=base;
}
while(i>0) lcd_data(buf[--i]);
} }
void lcd_print_num(int num, unsigned int base) { /* ---- Display helpers ---- */
char buffer[17]; void display_mode(void){
int i = 0;
unsigned int unum;
if (base == MODE_DEC) {
if (num < 0) {
lcd_data('-');
num = -num;
}
}
unum = (unsigned int)num;
if (unum == 0) {
lcd_data('0');
return;
}
while (unum > 0 && i < 16) {
unsigned int d = unum % base;
buffer[i++] = (d < 10) ? ('0' + d) : ('A' + d - 10);
unum /= base;
}
while (i > 0)
lcd_data(buffer[--i]);
}
/* ===== Display Helpers ===== */
void display_mode(void) {
lcd_cmd(0x80); lcd_cmd(0x80);
lcd_print_str("Mode: "); lcd_print_str("Mode: ");
if (current_base == MODE_BIN) if(current_base==MODE_BIN) lcd_print_str("BIN ");
lcd_print_str("BIN "); else if(current_base==MODE_BASE4) lcd_print_str("BASE4 ");
else if (current_base == MODE_BASE4) else if(current_base==MODE_OCT) lcd_print_str("OCT ");
lcd_print_str("BASE4 "); else if(current_base==MODE_DEC) lcd_print_str("DEC ");
else if (current_base == MODE_OCT) else { lcd_print_str("HEX");
lcd_print_str("OCT "); if(hex_op_mode) lcd_print_str("[OPS]");
else if (current_base == MODE_DEC) else lcd_print_str(" "); }
lcd_print_str("DEC ");
else {
lcd_print_str("HEX");
if (hex_operator_mode)
lcd_print_str("[OPS]");
else
lcd_print_str(" ");
}
} }
void display_input(void) { void display_input(void){
lcd_cmd(0xC0); lcd_cmd(0xC0);
lcd_print_str("Input: "); lcd_print_str("Input: ");
lcd_print_num(input_num, current_base); lcd_print_num(input_num,current_base);
lcd_print_str(" "); lcd_print_str(" ");
} }
void display_result(void) { void display_result(void){
lcd_cmd(0xC0); lcd_cmd(0xC0);
lcd_print_str("Result: "); lcd_print_str("Result: ");
lcd_print_num(result, current_base); lcd_print_num(result,current_base);
lcd_print_str(" "); lcd_print_str(" ");
} }
/* ===== Keypad and Button ===== */ /* ---- Keypad scanning ---- */
unsigned int scan_keypad(void) { unsigned int scan_keypad(void){
unsigned int col, row, row_bits; unsigned int col,row,row_bits;
for (col = 0; col < 4; col++) { for(col=0;col<4;col++){
LPC_GPIO0->FIOSET = COL_MASK; LPC_GPIO0->FIOSET=COL_MASK; delay(50);
delay(50); LPC_GPIO0->FIOCLR=(1<<(COL_BASE+col)); delay(200);
LPC_GPIO0->FIOCLR = (1 << (COL_BASE + col)); row_bits=(LPC_GPIO0->FIOPIN&ROW_MASK)>>ROW_BASE;
delay(200); if(row_bits!=0x0F){
row_bits = (LPC_GPIO0->FIOPIN & ROW_MASK) >> ROW_BASE; for(row=0;row<4;row++)
if(!(row_bits&(1<<row))){ LPC_GPIO0->FIOSET=COL_MASK; return col*4+row; }
if (row_bits != 0x0F) {
for (row = 0; row < 4; row++) {
if (!(row_bits & (1 << row))) {
LPC_GPIO0->FIOSET = COL_MASK;
return col * 4 + row;
} }
} }
} LPC_GPIO0->FIOSET=COL_MASK;
}
LPC_GPIO0->FIOSET = COL_MASK;
return 0xFF; return 0xFF;
} }
unsigned int scan_mode_button(void) { /* ---- MODE button ---- */
return ((LPC_GPIO2->FIOPIN & MODE_BUTTON) == 0) ? 1 : 0; unsigned int scan_mode_button(void){
return ((LPC_GPIO2->FIOPIN&MODE_BUTTON)==0)?1:0;
} }
/* ===== Mode and Button ===== */ void change_mode(void){
void change_mode(void) { if(current_base==MODE_DEC) current_base=MODE_BIN;
if (current_base == MODE_DEC) else if(current_base==MODE_BIN) current_base=MODE_BASE4;
current_base = MODE_BIN; else if(current_base==MODE_BASE4) current_base=MODE_OCT;
else if (current_base == MODE_BIN) else if(current_base==MODE_OCT) current_base=MODE_HEX;
current_base = MODE_BASE4; else current_base=MODE_DEC;
else if (current_base == MODE_BASE4)
current_base = MODE_OCT;
else if (current_base == MODE_OCT)
current_base = MODE_HEX;
else
current_base = MODE_DEC;
display_mode(); input_num=stored_num=result=0;
input_num = stored_num = result = 0; operation=OP_NONE; result_displayed=0;
operation = OP_NONE; display_mode(); display_input();
result_displayed = 0;
display_input();
} }
void handle_mode_button(void) { /* ---- Doublepress / mode handler ---- */
unsigned long now = millis(); void handle_mode_button(void){
unsigned long now=millis();
if (button_stable == 3 && button_state == 1) { if(button_stable==3 && button_state==1){
if (current_base == MODE_HEX) { if(current_base==MODE_HEX){
if ((now - last_mode_press_time) < 2000) { if((now-last_mode_press_time)<2000){
hex_operator_mode = !hex_operator_mode; hex_op_mode=!hex_op_mode;
display_mode(); display_mode(); last_mode_press_time=0;
last_mode_press_time = 0; } else last_mode_press_time=now;
} else { } else change_mode();
last_mode_press_time = now;
}
} else {
change_mode();
}
} }
} }
/* ===== Validation ===== */ /* ---- Validation ---- */
unsigned int is_valid_digit(unsigned int key) { unsigned int is_valid_digit(unsigned int key){
if (key >= 16) if(key>=16) return 0;
return 0; if(current_base==MODE_BIN && key>=2) return 0;
if (current_base == MODE_BIN && key >= 2) if(current_base==MODE_BASE4 && key>=4) return 0;
return 0; if(current_base==MODE_OCT && key>=8) return 0;
if (current_base == MODE_BASE4 && key >= 4) if(current_base==MODE_DEC && key>=10) return 0;
return 0;
if (current_base == MODE_OCT && key >= 8)
return 0;
if (current_base == MODE_DEC && key >= 10)
return 0;
return 1; return 1;
} }
/* ===== Arithmetic per base (optimized) ===== */ /* ---- Arithmetic core ---- */
int base_arith(int a, int b, unsigned int op, unsigned int base) { int base_arith(int a,int b,unsigned int op,unsigned int base){
int r = 0; int r=0;
switch(op){
switch (op) { case OP_ADD: r=a+b; break;
case OP_ADD: case OP_SUB: r=a-b; break;
r = a + b; case OP_MUL: r=a*b; break;
break; default: r=a; break;
case OP_SUB:
r = a - b;
break;
case OP_MUL:
r = a * b;
break;
default:
r = a;
break;
} }
// For non-decimal modes, keep everything positive and base-limited if(base!=MODE_DEC){ /* wraparound for others */
if (base != MODE_DEC) { if(r<0) r=((r%base)+base)%base;
if (r < 0) else r%= (base*base*base*base); /* loose limit */
r = ((r % base) + base) % base;
else
r = r % (base * base * base * base * base); // safe wraparound for multi-digit bases
} }
return r; return r;
} }
/* ===== Operation/Arithmetic Handling ===== */ /* ---- Operator control ---- */
void operate(unsigned int op) { void operate(unsigned int op){ stored_num=input_num; input_num=0; operation=op; result_displayed=0; }
stored_num = input_num; void perform_operation(void){
input_num = 0; result=base_arith(stored_num,input_num,operation,current_base);
operation = op;
result_displayed = 0;
}
void perform_operation(void) {
result = base_arith(stored_num, input_num, operation, current_base);
display_result(); display_result();
input_num = result; input_num=result; operation=OP_NONE; result_displayed=1;
operation = OP_NONE;
result_displayed = 1;
} }
/* ===== Key Classifier ===== */ unsigned char is_operator_active(unsigned int key){
unsigned char is_operator_active(unsigned int key) { if(key>=11 && key<=15){
if (key >= 11 && key <= 15) { if(current_base==MODE_HEX) return hex_op_mode;
if (current_base == MODE_HEX) else return 1;
return hex_operator_mode;
else
return 1;
} }
return 0; return 0;
} }
/* ===== MAIN ===== */ /* =================================================== */
int main(void) { /* ===================== MAIN ======================== */
current_base = MODE_DEC; /* =================================================== */
input_num = stored_num = result = 0; int main(void){
operation = OP_NONE; current_base=MODE_DEC;
result_displayed = 0; input_num=stored_num=result=0;
key = last_key = 0xFF; operation=OP_NONE; result_displayed=0;
stable = 0; key=last_key=0xFF; stable=0;
button_stable = 0; button_stable=0; button_state=last_button_state=0;
button_state = last_button_state = 0; hex_op_mode=0; last_mode_press_time=0;
hex_operator_mode = 0;
last_mode_press_time = 0;
/* ===== SystemClock & SysTick Setup ===== */
SystemCoreClockUpdate(); SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock / 1000); // 1ms tick SysTick_Config(SystemCoreClock/1000); // 1 ms tick
/* ===== Peripheral Init ===== */ LPC_PINCON->PINSEL0=0; LPC_PINCON->PINSEL1=0;
LPC_PINCON->PINSEL0 = 0; LPC_PINCON->PINSEL3=0; LPC_PINCON->PINSEL4=0;
LPC_PINCON->PINSEL1 = 0; LPC_PINCON->PINSEL0 &= ~0xFFF00000; // P0.4P0.11 as GPIO
LPC_PINCON->PINSEL3 = 0;
LPC_PINCON->PINSEL4 = 0;
LPC_GPIO0->FIODIR |= COL_MASK; LPC_GPIO0->FIODIR|=COL_MASK|(0xFF<<SEG_SHIFT)|LCD_DATA_MASK|LCD_RS|LCD_EN;
LPC_GPIO0->FIODIR &= ~ROW_MASK; LPC_GPIO0->FIODIR&=~ROW_MASK;
LPC_GPIO0->FIOSET = COL_MASK; LPC_GPIO0->FIOSET=COL_MASK;
LPC_GPIO1->FIODIR|=DIGIT_EN;
LPC_GPIO2->FIODIR&=~MODE_BUTTON;
LPC_GPIO2->FIODIR &= ~MODE_BUTTON; lcd_init(); display_mode(); display_input();
LPC_GPIO0->FIODIR |= (0xFF << SEG_SHIFT); while(1){
LPC_GPIO1->FIODIR |= DIGIT_EN; key=scan_keypad(); button_state=scan_mode_button();
LPC_GPIO0->FIODIR |= LCD_DATA_MASK | LCD_RS | LCD_EN;
lcd_init(); if(key==last_key) stable=(stable<5)?stable+1:stable;
display_mode(); else{ last_key=key; stable=0; }
display_input();
/* ===== Main Loop ===== */ if(button_state==last_button_state)
while (1) { button_stable=(button_stable<5)?button_stable+1:button_stable;
key = scan_keypad(); else{ last_button_state=button_state; button_stable=0; }
button_state = scan_mode_button();
// Debounce keypad
if (key == last_key)
stable = (stable < 5) ? stable + 1 : stable;
else {
last_key = key;
stable = 0;
}
// Debounce button
if (button_state == last_button_state)
button_stable = (button_stable < 5) ? button_stable + 1 : button_stable;
else {
last_button_state = button_state;
button_stable = 0;
}
handle_mode_button(); handle_mode_button();
if (stable == 3 && key != 0xFF) { if(stable==3 && key!=0xFF){
if (is_operator_active(key)) { if(is_operator_active(key)){
switch (key) { switch(key){
case 11: operate(OP_ADD); display_input(); break; case 11: operate(OP_ADD); display_input(); break;
case 12: input_num = stored_num = result = 0; case 12: input_num=stored_num=result=0;
operation = OP_NONE; display_input(); break; operation=OP_NONE; display_input(); break;
case 13: operate(OP_SUB); display_input(); break; case 13: operate(OP_SUB); display_input(); break;
case 14: operate(OP_MUL); display_input(); break; case 14: operate(OP_MUL); display_input(); break;
case 15: perform_operation(); break; case 15: perform_operation(); break;
} }
} else if (is_valid_digit(key)) { } else if(is_valid_digit(key)){
result_displayed = 0; result_displayed=0;
input_num = input_num * current_base + key; input_num=input_num*current_base+key;
display_input(); display_input();
} }
stable = 5; stable=5;
} }
// Simple 7-seg base display /* ---- 7segment display (commonanode assumed) ---- */
LPC_GPIO0->FIOCLR = (0xFF << SEG_SHIFT); unsigned int segval=seven_seg[0]; // default
unsigned int segval = 0x3F; // default '0' if(current_base==MODE_BIN) segval=seven_seg[2];
if (current_base == MODE_BIN) segval = seven_seg[2]; else if(current_base==MODE_BASE4) segval=seven_seg[4];
else if (current_base == MODE_BASE4) segval = seven_seg[4]; else if(current_base==MODE_OCT) segval=seven_seg[8];
else if (current_base == MODE_OCT) segval = seven_seg[8]; else if(current_base==MODE_DEC) segval=seven_seg[0];
else if (current_base == MODE_DEC) segval = seven_seg[0]; else if(current_base==MODE_HEX) segval=seven_seg[0xA];
else if (current_base == MODE_HEX) segval = seven_seg[0xA]; // 'A' for HEX
LPC_GPIO0->FIOSET = (segval << SEG_SHIFT); LPC_GPIO0->FIOSET=(0xFF<<SEG_SHIFT);
LPC_GPIO1->FIOSET = DIGIT_EN; LPC_GPIO0->FIOCLR=((~segval)&0xFF)<<SEG_SHIFT;
LPC_GPIO1->FIOCLR=DIGIT_EN; // activelow enable
delay(3000); delay(3000);
} }