MIT-Curricular/ES/Lab/Lab11/PWM_Keyboard.c
2025-10-23 12:56:40 +05:30

149 lines
4.4 KiB
C

#include "LPC17xx.h"
// PWM variables
volatile unsigned long int duty_cycle = 10; // Start at 10%
volatile unsigned long int pwm_counter = 0;
// Pin definitions
#define LED_SHIFT 4 // CNA: P0.4-P0.11
#define LED_MASK (0xFF << LED_SHIFT)
// Keypad on CND - ROW-0
#define COL0 (1<<0) // P2.0
#define COL1 (1<<1) // P2.1
#define COL2 (1<<23) // P0.23
#define COL3 (1<<24) // P0.24
#define ROW0 (1<<25) // P0.25
#define COL_MASK_P0 (COL2 | COL3)
#define COL_MASK_P2 (COL0 | COL1)
#define PWM_PERIOD 100 // 100 steps for percentage
static void delay_ms(unsigned int ms) {
unsigned int i, j;
for(i = 0; i < ms; i++)
for(j = 0; j < 10000; j++);
}
static void set_column(unsigned int col)
{
LPC_GPIO2->FIOSET = COL_MASK_P2;
LPC_GPIO0->FIOSET = COL_MASK_P0;
switch(col) {
case 0: LPC_GPIO2->FIOCLR = COL0; break;
case 1: LPC_GPIO2->FIOCLR = COL1; break;
case 2: LPC_GPIO0->FIOCLR = COL2; break;
case 3: LPC_GPIO0->FIOCLR = COL3; break;
}
}
static unsigned int is_row0_pressed(void)
{
return !(LPC_GPIO0->FIOPIN & ROW0);
}
// HIGH-SPEED PWM Interrupt Handler
void PWM1_IRQHandler(void)
{
if (LPC_PWM1->IR & (1 << 0))
{
// Fast software PWM for all 8 LEDs
if(pwm_counter < duty_cycle)
LPC_GPIO0->FIOSET = LED_MASK; // All LEDs ON
else
LPC_GPIO0->FIOCLR = LED_MASK; // All LEDs OFF
pwm_counter++;
if(pwm_counter >= PWM_PERIOD)
pwm_counter = 0;
LPC_PWM1->IR = (1 << 0); // Clear interrupt flag
}
}
int main(void)
{
unsigned int col_idx;
unsigned int read_key;
unsigned int last_key = 0xFF;
// === PIN CONFIGURATION ===
LPC_PINCON->PINSEL0 &= ~(0xFFFF << 8); // P0.4-P0.11 as GPIO
LPC_PINCON->PINSEL1 &= ~(0xFFFF << 14); // P0.23-P0.28 as GPIO
LPC_PINCON->PINSEL4 &= ~(0xF << 0); // P2.0-P2.1 as GPIO
// === GPIO SETUP ===
LPC_GPIO0->FIODIR |= LED_MASK; // LEDs output
LPC_GPIO0->FIODIR |= COL_MASK_P0; // Columns output
LPC_GPIO2->FIODIR |= COL_MASK_P2; // Columns output
LPC_GPIO0->FIODIR &= ~ROW0; // Row input
// Initialize
LPC_GPIO0->FIOCLR = LED_MASK;
LPC_GPIO2->FIOSET = COL_MASK_P2;
LPC_GPIO0->FIOSET = COL_MASK_P0;
// === HIGH-SPEED PWM CONFIGURATION ===
LPC_SC->PCONP |= (1 << 6); // Power on PWM1
LPC_PWM1->TCR = (1 << 1); // Reset
LPC_PWM1->CTCR = 0; // Timer mode
LPC_PWM1->PR = 9; // Prescaler = 10
// 100MHz / 10 = 10MHz timer clock
LPC_PWM1->MR0 = 100; // Match every 100 ticks
// Interrupt rate = 10MHz/100 = 100kHz
// PWM frequency = 100kHz/100 = 1kHz
// NO VISIBLE FLICKER!
LPC_PWM1->MCR = (1 << 1) | (1 << 0); // Reset on MR0 + interrupt
LPC_PWM1->LER = (1 << 0); // Latch MR0
NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt
NVIC_SetPriority(PWM1_IRQn, 0); // Highest priority
LPC_PWM1->TCR = (1 << 0) | (1 << 3); // Start PWM
// === MAIN LOOP ===
while(1)
{
read_key = 0xFF;
// Scan ROW-0 only
for(col_idx = 0; col_idx < 4; col_idx++)
{
set_column(col_idx);
delay_ms(5); // Short delay for stable reading
if(is_row0_pressed()) {
read_key = col_idx; // Key 0, 1, 2, or 3
// Wait for key release
while(is_row0_pressed()) {
delay_ms(10);
}
break;
}
}
// Restore columns
LPC_GPIO2->FIOSET = COL_MASK_P2;
LPC_GPIO0->FIOSET = COL_MASK_P0;
// Update brightness immediately on key press
if(read_key != 0xFF && read_key != last_key) {
last_key = read_key;
switch(read_key) {
case 0: duty_cycle = 10; break; // 10%
case 1: duty_cycle = 25; break; // 25%
case 2: duty_cycle = 50; break; // 50%
case 3: duty_cycle = 75; break; // 75%
}
}
delay_ms(50); // Main loop delay
}
}