MIT-Curricular/ES/Project/code.c
2025-10-24 09:48:16 +05:30

425 lines
11 KiB
C

#include <LPC17xx.h>
/* PORT MAPPING:
* KEYPAD MATRIX (4x4):
* Columns: P0.15 - P0.18 (Output, pulled high, scan low)
* Rows: P0.19 - P0.22 (Input, pulled high internally)
*
* Layout: 0 1 2 3
* 4 5 6 7
* 8 9 A B
* C D E F
*
* 7-SEGMENT DISPLAY:
* Segments: P0.4 - P0.11 (a-g + dp)
* Digit Enable: P1.23 (active high)
*
* LCD (16x2):
* Data: P0.23 - P0.26 (D4-D7, 4-bit mode)
* RS: P0.27
* EN: P0.28
*
* MODE BUTTON:
* P2.12 (Input, internal pull-up)
*
* KEY FUNCTIONS:
* 0-9, A-F: Digit input (valid based on current base)
*
* OPERATOR MODE (Hold Key 0 + another key):
* Key 0 + B: Addition (+)
* Key 0 + C: Clear (C)
* Key 0 + D: Subtraction (-)
* Key 0 + E: Multiplication (*)
* Key 0 + F: Equals (=)
*
* P2.12 Button: Mode selection (cycles: DEC->BIN->OCT->HEX)
*/
// 7-Segment patterns
const unsigned char seven_seg[16] = {
0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,
0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71
};
// Keypad defines
#define COL_BASE 15
#define ROW_BASE 19
#define COL_MASK (0x0F << COL_BASE)
#define ROW_MASK (0x0F << ROW_BASE)
// 7-Segment defines
#define SEG_SHIFT 4
#define DIGIT_EN (1<<23)
// LCD defines
#define LCD_DATA_SHIFT 23
#define LCD_DATA_MASK (0x0F << LCD_DATA_SHIFT)
#define LCD_RS (1<<27)
#define LCD_EN (1<<28)
// Mode button defines
#define MODE_BUTTON (1<<12)
// Calculator states
#define MODE_BIN 2
#define MODE_OCT 8
#define MODE_DEC 10
#define MODE_HEX 16
#define OP_NONE 0
#define OP_ADD 1
#define OP_SUB 2
#define OP_MUL 3
// Global variables - CHANGED to signed int
int input_num = 0;
int stored_num = 0;
int result = 0;
unsigned int current_base = MODE_DEC;
unsigned int operation = OP_NONE;
unsigned char lcd_flag = 0;
void delay(volatile unsigned int d){
while(d--) __NOP();
}
void lcd_delay(unsigned long r){
unsigned long i;
for(i=0; i<r; i++);
}
void lcd_write_nibble(unsigned char nibble, unsigned char is_data){
unsigned long temp;
temp = (nibble & 0x0F) << LCD_DATA_SHIFT;
LPC_GPIO0->FIOPIN = (LPC_GPIO0->FIOPIN & ~LCD_DATA_MASK) | temp;
if(is_data)
LPC_GPIO0->FIOSET = LCD_RS;
else
LPC_GPIO0->FIOCLR = LCD_RS;
LPC_GPIO0->FIOSET = LCD_EN;
lcd_delay(100);
LPC_GPIO0->FIOCLR = LCD_EN;
lcd_delay(500000);
}
void lcd_cmd(unsigned char cmd){
lcd_write_nibble(cmd >> 4, 0);
lcd_write_nibble(cmd, 0);
}
void lcd_data(unsigned char data){
lcd_write_nibble(data >> 4, 1);
lcd_write_nibble(data, 1);
}
void lcd_init(void){
lcd_delay(5000000);
lcd_write_nibble(0x03, 0);
lcd_delay(500000);
lcd_write_nibble(0x03, 0);
lcd_delay(500000);
lcd_write_nibble(0x03, 0);
lcd_delay(500000);
lcd_write_nibble(0x02, 0);
lcd_delay(500000);
lcd_cmd(0x28);
lcd_cmd(0x0C);
lcd_cmd(0x01);
lcd_delay(500000);
lcd_cmd(0x06);
}
void lcd_print_str(const char* str){
while(*str){
lcd_data(*str++);
}
}
// MODIFIED to handle negative numbers
void lcd_print_num(int num, unsigned int base){
char buffer[17];
int i = 0;
// For non-decimal bases, show as unsigned (two's complement representation)
if(base != MODE_DEC){
unsigned int unum = (unsigned int)num;
if(unum == 0){
lcd_data('0');
return;
}
while(unum > 0 && i < 16){
unsigned int digit = unum % base;
if(digit < 10)
buffer[i++] = '0' + digit;
else
buffer[i++] = 'A' + (digit - 10);
unum = unum / base;
}
} else {
// Decimal mode: handle negative with minus sign
if(num < 0){
lcd_data('-');
num = -num;
}
if(num == 0){
lcd_data('0');
return;
}
while(num > 0 && i < 16){
buffer[i++] = '0' + (num % 10);
num = num / 10;
}
}
while(i > 0){
lcd_data(buffer[--i]);
}
}
void display_mode(void){
lcd_cmd(0x80);
lcd_print_str("Mode: ");
if(current_base == MODE_BIN)
lcd_print_str("BIN ");
else if(current_base == MODE_OCT)
lcd_print_str("OCT ");
else if(current_base == MODE_DEC)
lcd_print_str("DEC ");
else
lcd_print_str("HEX ");
}
void display_input(void){
lcd_cmd(0xC0);
lcd_print_str("Inp: ");
lcd_print_num(input_num, current_base);
lcd_print_str(" ");
}
void display_operator_feedback(const char* op_symbol){
// Brief feedback on line 2
lcd_cmd(0xC0);
lcd_print_str("Op: ");
lcd_print_str(op_symbol);
lcd_print_str(" ");
delay(100000); // Brief delay to show feedback
display_input(); // Return to showing input
}
unsigned int scan_keypad(void){
unsigned int col, row;
unsigned int row_bits;
for(col=0; col<4; col++){
LPC_GPIO0->FIOSET = COL_MASK;
delay(50);
LPC_GPIO0->FIOCLR = (1 << (COL_BASE + col));
delay(200);
row_bits = (LPC_GPIO0->FIOPIN & ROW_MASK) >> ROW_BASE;
if(row_bits != 0x0F){
for(row=0; row<4; row++){
if((row_bits & (1<<row)) == 0){
LPC_GPIO0->FIOSET = COL_MASK;
return col*4 + row;
}
}
}
}
LPC_GPIO0->FIOSET = COL_MASK;
return 0xFF;
}
// Check if Key 0 is currently pressed (shift key)
unsigned int is_key0_pressed(void){
unsigned int col = 0; // Key 0 is at column 0, row 0
unsigned int row_bits;
LPC_GPIO0->FIOSET = COL_MASK;
delay(50);
LPC_GPIO0->FIOCLR = (1 << (COL_BASE + col));
delay(200);
row_bits = (LPC_GPIO0->FIOPIN & ROW_MASK) >> ROW_BASE;
LPC_GPIO0->FIOSET = COL_MASK;
// Check if row 0 is pressed (Key 0)
return ((row_bits & 0x01) == 0) ? 1 : 0;
}
unsigned int scan_mode_button(void){
// Return 1 if button is pressed (active low), 0 if not pressed
return ((LPC_GPIO2->FIOPIN & MODE_BUTTON) == 0) ? 1 : 0;
}
unsigned int is_valid_digit(unsigned int key){
if(key >= 16) return 0;
if(current_base == MODE_BIN && key >= 2) return 0;
if(current_base == MODE_OCT && key >= 8) return 0;
if(current_base == MODE_DEC && key >= 10) return 0;
// In HEX mode, all keys 0-15 are valid digits!
return 1;
}
void change_mode(void){
if(current_base == MODE_DEC)
current_base = MODE_BIN;
else if(current_base == MODE_BIN)
current_base = MODE_OCT;
else if(current_base == MODE_OCT)
current_base = MODE_HEX;
else
current_base = MODE_DEC;
display_mode();
}
int main(void){
unsigned int key, last_key = 0xFF;
unsigned int stable = 0;
unsigned int button_state, last_button_state = 0;
unsigned int button_stable = 0;
unsigned int shift_active = 0;
// Configure pins
LPC_PINCON->PINSEL0 = 0;
LPC_PINCON->PINSEL1 = 0;
LPC_PINCON->PINSEL3 = 0;
LPC_PINCON->PINSEL4 = 0; // Configure P2.12
// Keypad: Columns output, Rows input
LPC_GPIO0->FIODIR |= COL_MASK;
LPC_GPIO0->FIODIR &= ~ROW_MASK;
LPC_GPIO0->FIOSET = COL_MASK;
// Mode button: Input with internal pull-up
LPC_GPIO2->FIODIR &= ~MODE_BUTTON; // Set as input
// 7-Segment
LPC_GPIO0->FIODIR |= (0xFF << SEG_SHIFT);
LPC_GPIO1->FIODIR |= DIGIT_EN;
// LCD
LPC_GPIO0->FIODIR |= LCD_DATA_MASK | LCD_RS | LCD_EN;
lcd_init();
display_mode();
display_input();
for(;;){
// Check if shift key (Key 0) is being held
shift_active = is_key0_pressed();
// Scan for other keys
key = scan_keypad();
button_state = scan_mode_button();
// Debounce keypad
if(key == last_key){
if(stable < 5) stable++;
} else {
last_key = key;
stable = 0;
}
// Debounce mode button
if(button_state == last_button_state){
if(button_stable < 5) button_stable++;
} else {
last_button_state = button_state;
button_stable = 0;
}
// Handle mode button press
if(button_stable == 3 && button_state == 1){
change_mode();
button_stable = 5; // Prevent multiple triggers
}
// Handle keypad input
if(stable == 3 && key != 0xFF){
// Key pressed and stable
// If Key 0 is also pressed, we're in operator mode
if(shift_active && key != 0){
// OPERATOR MODE (Key 0 + another key)
if(key == 11){ // Key 0 + B = Addition
stored_num = input_num;
operation = OP_ADD;
input_num = 0;
display_operator_feedback("+");
}
else if(key == 12){ // Key 0 + C = Clear
input_num = 0;
stored_num = 0;
operation = OP_NONE;
result = 0;
display_operator_feedback("CLR");
}
else if(key == 13){ // Key 0 + D = Subtraction
stored_num = input_num;
operation = OP_SUB;
input_num = 0;
display_operator_feedback("-");
}
else if(key == 14){ // Key 0 + E = Multiplication
stored_num = input_num;
operation = OP_MUL;
input_num = 0;
display_operator_feedback("*");
}
else if(key == 15){ // Key 0 + F = Equals
if(operation == OP_ADD)
result = stored_num + input_num;
else if(operation == OP_SUB)
result = stored_num - input_num;
else if(operation == OP_MUL)
result = stored_num * input_num;
else
result = input_num;
lcd_cmd(0xC0);
lcd_print_str("Res: ");
lcd_print_num(result, current_base);
lcd_print_str(" ");
input_num = result;
operation = OP_NONE;
}
}
else {
// NORMAL MODE - Digit input
if(is_valid_digit(key)){
input_num = input_num * current_base + key;
// Handle overflow with wrap-around for signed int
if(input_num > 32767) input_num = input_num % 32768;
if(input_num < -32768) input_num = -32768;
display_input();
}
}
stable = 5; // Prevent repeated triggers
}
// Display result on 7-segment (last digit only)
// MODIFIED: Use decimal point to indicate negative numbers
int display_value = (input_num < 0) ? -input_num : input_num;
unsigned int display_digit = display_value % 16;
unsigned int seg_pattern = seven_seg[display_digit];
// Turn on decimal point if number is negative
if(input_num < 0){
seg_pattern |= 0x80; // Bit 7 is the decimal point
}
LPC_GPIO0->FIOCLR = (0xFF << SEG_SHIFT);
LPC_GPIO0->FIOSET = (seg_pattern << SEG_SHIFT);
LPC_GPIO1->FIOSET = DIGIT_EN;
delay(3000);
}
}