352 lines
9.4 KiB
C
352 lines
9.4 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#define MAX 100
|
|
|
|
typedef struct TNode *Tptr;
|
|
typedef struct TNode {
|
|
int data;
|
|
Tptr leftchild;
|
|
Tptr rightchild;
|
|
} TNode;
|
|
|
|
Tptr root;
|
|
|
|
int top = -1;
|
|
Tptr stack[MAX];
|
|
|
|
// Create nodes in the tree
|
|
Tptr createNode(int val) {
|
|
Tptr temp = (Tptr)malloc(sizeof(TNode));
|
|
temp->data = val;
|
|
temp->leftchild = temp->rightchild = NULL;
|
|
return temp;
|
|
}
|
|
|
|
// Create the binary tree
|
|
void createTree(int N) {
|
|
int cData, dIndex;
|
|
char dir[50];
|
|
Tptr previous = NULL, current;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
printf("Enter data for node %d (integer value): ", i + 1);
|
|
scanf("%d", &cData);
|
|
Tptr temp = createNode(cData);
|
|
|
|
// Assign root node
|
|
if (!root) {
|
|
root = temp;
|
|
} else {
|
|
printf("Enter the direction to insert (L for left, R for right): ");
|
|
scanf("%s", dir);
|
|
current = root;
|
|
previous = NULL;
|
|
|
|
for (dIndex = 0; dir[dIndex] != '\0' && current != NULL; dIndex++) {
|
|
previous = current;
|
|
if (dir[dIndex] == 'L' || dir[dIndex] == 'l') {
|
|
current = current->leftchild;
|
|
} else if (dir[dIndex] == 'R' || dir[dIndex] == 'r') {
|
|
current = current->rightchild;
|
|
} else {
|
|
printf("Invalid direction. Use 'L' for left and 'R' for right.\n");
|
|
free(temp);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (current != NULL || dir[dIndex] != '\0') {
|
|
printf("Invalid position for insertion.\n");
|
|
free(temp);
|
|
return;
|
|
}
|
|
if (dir[dIndex - 1] == 'L' || dir[dIndex - 1] == 'l') {
|
|
previous->leftchild = temp;
|
|
} else {
|
|
previous->rightchild = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isFull() {
|
|
return top == MAX;
|
|
}
|
|
|
|
bool isEmpty() {
|
|
return top == -1;
|
|
}
|
|
|
|
// Push nodes onto the stack
|
|
void Push(Tptr node) {
|
|
if (!isFull()) {
|
|
stack[++top] = node;
|
|
}
|
|
}
|
|
|
|
// Pop node from the stack
|
|
Tptr Pop() {
|
|
Tptr ret = NULL;
|
|
if (!isEmpty()) {
|
|
ret = stack[top--];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Tptr peek() {
|
|
return stack[top];
|
|
}
|
|
|
|
// Print node elements in inorder
|
|
void IterativeInorder(Tptr node) {
|
|
while (true) {
|
|
while (node) { // Push all left children
|
|
Push(node);
|
|
node = node->leftchild;
|
|
}
|
|
node = Pop();
|
|
if (node == NULL) { // Stack is empty
|
|
break;
|
|
}
|
|
printf("%d ", node->data);
|
|
node = node->rightchild;
|
|
}
|
|
}
|
|
|
|
// Print node elements in preorder
|
|
void IterativePreorder(Tptr node) {
|
|
for (;;) {
|
|
for (; node; node = node->leftchild) {
|
|
Push(node);
|
|
printf("%d ", node->data);
|
|
}
|
|
node = Pop();
|
|
if (node == NULL) {
|
|
break;
|
|
}
|
|
node = node->rightchild;
|
|
}
|
|
}
|
|
|
|
// Print node elements in postorder
|
|
void IterativePostorder(Tptr node) {
|
|
while (true) {
|
|
if (node) { // Push all left children
|
|
Push(node);
|
|
node = node->leftchild;
|
|
} else {
|
|
if (!peek()) { // Stack is empty
|
|
break;
|
|
}
|
|
|
|
Tptr temp = peek()->rightchild;
|
|
|
|
if (temp == NULL) { // Right child doesn't exist
|
|
temp = Pop();
|
|
printf("%d ", temp->data);
|
|
while (!isEmpty() && temp == peek()->rightchild) { // Only when temp is the right child of the top
|
|
temp = Pop(); // Extra pop if it is the right child
|
|
printf("%d ", temp->data);
|
|
}
|
|
} else { // If right child of the top of stack exists, push it and its left children
|
|
node = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the parent of a given node
|
|
Tptr ParentNode(Tptr node, int target) {
|
|
if (!node) {
|
|
return NULL;
|
|
}
|
|
|
|
if ((node->leftchild && node->leftchild->data == target) || (node->rightchild && node->rightchild->data == target)) {
|
|
return node;
|
|
}
|
|
|
|
// Return left if not null, else return right
|
|
Tptr left = ParentNode(node->leftchild, target);
|
|
if (left != NULL) {
|
|
return left;
|
|
}
|
|
|
|
return ParentNode(node->rightchild, target);
|
|
}
|
|
|
|
// Count nodes
|
|
void countnodes(TNode* root, int *count) {
|
|
if (root) {
|
|
(*count)++;
|
|
countnodes(root->leftchild, count);
|
|
countnodes(root->rightchild, count);
|
|
}
|
|
}
|
|
|
|
int cntnodes(TNode* node) {
|
|
if (!node) {
|
|
return 0;
|
|
} else {
|
|
int right = cntnodes(node->rightchild);
|
|
int left = cntnodes(node->leftchild);
|
|
return left + right + 1;
|
|
}
|
|
}
|
|
|
|
// Find the depth of a given tree
|
|
int maxDepth(Tptr root) {
|
|
if (root == NULL) {
|
|
return 0;
|
|
} else {
|
|
int leftDepth = maxDepth(root->leftchild);
|
|
int rightDepth = maxDepth(root->rightchild);
|
|
return (leftDepth > rightDepth) ? (leftDepth + 1) : (rightDepth + 1);
|
|
}
|
|
}
|
|
|
|
// Print all the ancestors of a node
|
|
int printAncestors(Tptr root, int target) {
|
|
if (root == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (root->data == target) {
|
|
return 1;
|
|
}
|
|
|
|
if (printAncestors(root->leftchild, target) || printAncestors(root->rightchild, target)) {
|
|
printf("%d ", root->data);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Count the number of leaf nodes in a tree
|
|
int countLeafNodes(Tptr root) {
|
|
if (root == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (root->leftchild == NULL && root->rightchild == NULL) {
|
|
return 1;
|
|
} else {
|
|
int leftLeafCount = countLeafNodes(root->leftchild);
|
|
int rightLeafCount = countLeafNodes(root->rightchild);
|
|
return leftLeafCount + rightLeafCount;
|
|
}
|
|
}
|
|
|
|
void cntleaf(Tptr root, int *count) {
|
|
if (root && (root->leftchild) == NULL && (root->rightchild) == NULL) {
|
|
(*count)++;
|
|
}
|
|
if (root) {
|
|
cntleaf(root->leftchild, count);
|
|
cntleaf(root->rightchild, count);
|
|
}
|
|
if (!root) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
int N;
|
|
root = NULL;
|
|
int choice, target;
|
|
int lcount = 0; // Move this declaration here
|
|
|
|
do {
|
|
printf("\nBinary Tree Operations\n");
|
|
printf("1. Create Tree\n");
|
|
printf("2. Inorder Traversal\n");
|
|
printf("3. Preorder Traversal\n");
|
|
printf("4. Postorder Traversal\n");
|
|
printf("5. Find Parent of a Node\n");
|
|
printf("6. Find Depth of the Tree\n");
|
|
printf("7. Print Ancestors of a Node\n");
|
|
printf("8. Count Leaf Nodes\n");
|
|
printf("9. Exit\n");
|
|
printf("Enter your choice: ");
|
|
scanf("%d", &choice);
|
|
|
|
switch (choice) {
|
|
case 1:
|
|
// Create the binary tree
|
|
printf("Enter the number of nodes: ");
|
|
scanf("%d", &N);
|
|
createTree(N);
|
|
int count = cntnodes(root);
|
|
printf("Number of nodes: %d\n", count);
|
|
break;
|
|
|
|
case 2:
|
|
// Inorder Traversal
|
|
printf("Inorder Traversal: ");
|
|
IterativeInorder(root);
|
|
printf("\n"); // New line for clarity
|
|
break;
|
|
|
|
case 3:
|
|
// Preorder Traversal
|
|
printf("Preorder Traversal: ");
|
|
IterativePreorder(root);
|
|
printf("\n");
|
|
break;
|
|
|
|
case 4:
|
|
// Postorder Traversal
|
|
printf("Postorder Traversal: ");
|
|
IterativePostorder(root);
|
|
printf("\n");
|
|
break;
|
|
|
|
case 5:
|
|
// Find Parent of a Node
|
|
printf("Enter the value of the target node (integer): ");
|
|
scanf("%d", &target);
|
|
Tptr parent = ParentNode(root, target);
|
|
if (parent) {
|
|
printf("Parent of %d is %d\n", target, parent->data);
|
|
} else {
|
|
printf("Node not found\n");
|
|
}
|
|
break;
|
|
|
|
case 6:
|
|
// Find Depth of the Tree
|
|
printf("Depth of the tree is: %d\n", maxDepth(root));
|
|
break;
|
|
|
|
case 7:
|
|
// Print Ancestors of a Node
|
|
printf("Enter the value of the target node (integer): ");
|
|
scanf("%d", &target);
|
|
printf("Ancestors of %d: ", target);
|
|
if (!printAncestors(root, target)) {
|
|
printf("No ancestors found or node does not exist.\n");
|
|
}
|
|
printf("\n");
|
|
break;
|
|
|
|
case 8:
|
|
// Count Leaf Nodes
|
|
lcount = 0; // Reset count for each call
|
|
cntleaf(root, &lcount);
|
|
printf("Number of leaf nodes: %d\n", lcount);
|
|
break;
|
|
|
|
case 9:
|
|
// Exit
|
|
printf("Exiting the program.\n");
|
|
break;
|
|
|
|
default:
|
|
printf("Invalid choice. Please try again.\n");
|
|
}
|
|
} while (choice != 9);
|
|
|
|
return 0;
|
|
}
|