B. Tech Computer and Communication Engineering

COURSE PLAN: Embedded System Design Lab

Department:	Information and Communication Technology						
Course Name & code:	Embedded	Embedded System Design ICT 3143					
Semester & branch:	V			CCE			
Name of the faculty:	Dr. Rashm	Dr. Rashmi Naveen Raj					
N 6 4 41 / 1		L		T		P	C
No of contact hours/week:		3		0		0	1

Course Outcomes (COs)

1	At the end of this course, the student should be able to:	No. of Contact Hours	Marks
CO1	Develop a Program for an embedded system using ARM controller	15	26
CO2	Solve problems on input/output devices using embedded C	9	28
CO3	Design embedded system application for a given use case scenario to meet the customer requirements	9	26
CO4	Apply appropriate IoT concepts to carry out the mini project	3	20
	Total	36	100

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PS01	PSO2	PSO3
CO1	2	2	2					2					2	2	2
CO2	2	2	2										2	2	2
CO3	2							2	2				2	2	2
CO4	2	2	2					2	2		2		2	2	2
CO5															
Average Articulation Level	2	2	2					2	2		2		2	2	2

ICT Tools used in delivery and assessment

Sl. No	Name of the ICT tool used	Details of how it is used
1	Keil software	Demonstrate the execution of assembly and embedded C programming
2	LPC1768 microcontroller board	To test the embedded program on the kit
3	Flash magic	To download the hex file to the board

Course Outcomes (COs)/Course Learning Outcomes (CLOs) to PO, PSO, LO, BL Mapping

	e end of this course, the lent should be able to:	No. of Contact Hours	Marks	Program Outcomes (PO's)	Program Specific Outcomes (PSO)	Learning Outcomes (LOs) **	BL
CO1	Develop a Program for an embedded system using ARM controller	15	26	1,2,3,8	1,2,3	2,3,5	3
CO2	Solve problems on input/output devices using embedded C	9	28	1,2,3	1,2,3	2,3,5	3
CO3	Design embedded system application for a given use case scenario to meet the customer requirements	9	26	1,8,9	1,2,3	5	4
CO4	Apply appropriate IoT concepts to carry out the mini project	3	20	1,2,38,9, 11	1,2,3	12,13	3
	Total	36	100	1,2,3,8,9,	1,2,3	2,3,5,12,13	3,4

^{**} Delete this column if not relevant.

Delivery and assessment Plan of LOs #

Learning	Outcome (LO) mapped to the course	Delivery and assessment Plan
LO	LO statement	Denvery and assessment rian
2	Analyse complex problems to reach substantiated conclusions using first principles of mathematics, statistics, natural science and engineering principles	Lecture, Quiz, Test,

3	Select and apply appropriate computational and analytical techniques to model complex problems, recognising the limitations of the techniques employed	Demonstration, Quiz, Test,Exam
5	Design solutions for complex problems that meet a combination of societal, user, business and customer needs as appropriate. This will involve consideration of applicable health & safety, diversity, inclusion, cultural, societal, environmental and commercial matters, codes of practice and industry standards	Demonstration, Quiz, Test,Exam
12	Use practical laboratory and workshop skills to investigate complex problems	Demonstration, Quiz, Test,Exam
13	Select and apply appropriate materials, equipment, engineering technologies and processes, recognising their limitations	Demonstration, Project Demo, Viva

[#] Applicable to IET Accredited Programs

ASSESSMENT PLAN

Components	Continuous Evaluation: Experiments/Open Ended experiments	Mini Project (Optional)	End semester Examination
Duration	3 Hours per week	1 months	120 Minutes
Weightage	40%	20%	40%
Typology of questions	Applying; Analysing. Evaluating.	Applying; Analysing. Evaluating. Creating	Applying; Analysing; Evaluating; Creating
Pattern	Aim, Procedure, Conduction, Analysis, Result discussion, Conclusion.	Synopsis, Demonstration, Viva, Report Submission	One question on embedded C.
Schedule	Weekly	To be decided by the faculty	13th week of the semester
Topics	As per syllabus	Expt 6 to 12.	Experiments/Open ended. Individual
Mode of Conducting	Individual	Group	Individual

Lesson Plan

L No	Topics	Course Outcome Addressed
Exp 1	Introduction to keil software	CLO1
Exp 2	Data transfer programs	CLO1
Exp 3	Arithmetic programs	CLO1
Exp 4	Code conversion programs	CLO1
Exp 5	Sorting, searching and stack	CL01
Exp 6	Introduction to embedded C programming	CL02
Exp 7	LED interfacing	CL02
Exp 8	Multiplexed seven segment interfacing	CLO2
Exp 9	LCD and keyboard interfacing	CLO3
Exp 10	Analog to digital converter	CLO3
Exp 11	Pulse width modulation	CLO3
Exp 12	Miniproject	CLO4

References:

- 1. Muhammed A. Mazidi, Sarmad N., Sepehr N. and Shujen Chen, ARM Assembly Language Programming & Architecture, Second Edition, 2016
- 2. UM10360 LPC176xx User manual, Rev 3.1, NXP B. V. 2014

Submitted by: Dr. Rashmi N R

(Signature of the faculty)

Date: 23/07/25

Approved by:

(Signature of HOD)

Date:

Dr. Smitha N. Pai Dr. Smitha N. Pai Dr. Smitha N. Dean Prot. and Assoc. Engineering Prot. and Assoc. Engineering

Faculty members teaching the course (if multiple sections exist):

Faculty	Section	Faculty	Section	Signature
Dr. Pradeep Reddy		,		
Dr. Santhosh Kamath				
Dr. Rashmi N. R				
Dr. Sameena Pathan				