
Information Security Lab

V Semester: B. Tech IT/CCE (ICT 3141)

Year: 2025

SCHOOL OF COMPUTER ENGINEERING

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal – 576 104

SCHOOL OF COMPUTER ENGINEERING

Certificate
This is to certify that Ms./Mr. …………………...……………………………………

Reg. No. …..…………………… Section: ……………… Roll No: ………………... has

satisfactorily completed the lab exercises prescribed for Information Security Lab [ICT

3141] of Third Year B. Tech. (IT/CCE) Degree at MIT, Manipal, in the academic year

2025-2026.

Date: ……...................................

 Signature of the faculty

CONTENTS

Lab
No. Title Page

No. Marks Remarks Sign

Course Objectives, Outcomes and
Evaluation Plan

Instructions to the Students

1 Basic Symmetric Key Ciphers 1

2 Advanced Symmetric Key Ciphers 6

3 Asymmetric Key Ciphers 14

4 Advanced Asymmetric Key
Cryptography

22

5 Hashing 31

6 Digital Signature 34

7 Partial Homomorphic Encryption 40

8 Searchable Encryption 48

9 Project Design 56

10 Project implementation 57

11 Testing and validation 58

12 References 59

iv

Course Objectives
 Assess potential system vulnerabilities.

 Gain practical insight into various algorithms that can provide system, device, and

network security.

 Use techniques and tools to fix security vulnerabilities

Course Outcomes

 The student should be able to:

 Implement symmetric and asymmetric cryptographic techniques using appropriate

libraries or tools to ensure secure communication.

 Analyze cryptographic hash functions and digital signatures for data integrity and

authentication.

 Demonstrate advanced encryption paradigms such as partial homomorphic and

searchable encryption to address modern security requirements.

 Design and develop applications that apply information security principles to

solve real-world problems using suitable tools and techniques.

Evaluation plan

Internal
Evaluation
(60 Marks)

Record – 14
Marks

Record Evaluation-1 = 7 Marks

Record Evaluation-2 = 7 Marks

Mid-Term - 20
Marks

Write-up = 5 Marks

Execution = 15 Marks

Project - 10
Marks Project work = 10 Marks

Program Check-
07 Marks Program check-1 = 7 Marks

Quiz – 09 Marks Quiz – 9 Marks

Final Exam
(40 Marks)

Exam - 40
Marks

Part 1 – Experiments = 20 Marks

Part 2 – Project submission = 20 Marks

INSTRUCTIONS TO THE STUDENTS
Pre- Lab Session Instructions
1. Students should carry the Lab Manual Book and the required stationary to every lab

session
2. Be on time and follow the institution dress code
3. Must Sign in the log register provided
4. Make sure to occupy the allotted seat and answer the attendance
5. Adhere to the rules and maintain the decorum

In- Lab Session Instructions
• Follow the instructions on the allotted exercises

• Show the program and results to the instructors on completion of experiments

• On receiving approval from the instructor, copy the program and results in the Lab
record

• Prescribed textbooks and class notes can be kept ready for reference if required

General Instructions for the exercises in Lab
• Implement the given exercise individually and not in a group.

• The programs should meet the following criteria:
o Programs should be interactive with appropriate prompt messages, error

messages if any, and descriptive messages for outputs.
o Programs should perform input validation (Data type, range error, etc.) and

give appropriate error messages and suggest corrective actions.
o Comments should be used to give the statement of the problem and every

function should indicate the purpose of the function, inputs and outputs.
o Statements within the program should be properly indented.
o Use meaningful names for variables and functions.
o Make use of constants and type definitions wherever needed.

• Plagiarism (copying from others) is strictly prohibited and would invite severe
penalty in evaluation.

• The exercises for each week are divided under three sets:
o Solved exercise
o Lab exercises - to be completed during lab hours
o Additional Exercises - to be completed outside the lab or in the lab to enhance

the skill
• In case a student misses a lab class, he/she must ensure that the experiment is

completed during the repetition class with the permission of the faculty concerned
but credit will be given only to one day’s experiment(s).

• Students missing out lab on genuine reasons like conference, sport or activities
assigned by the department or institute will have to take prior permission from the
HOD to attend additional lab (in other batch) and complete it before the student
goes on leave. The student could be awarded marks for the write up for that day
provided he submits it during the immediate next lab.

• Students who fall sick should get permission from the HOD for evaluating the lab
records. However, the attendance will not be given for that lab.

• Students will be evaluated only by the faculty with whom they are registered even
though they carry out additional experiment in another batch.

• Presence of the student during the lab end semester exams is mandatory even if the
student assumes he has scored enough to pass the examination

• Minimum attendance of 75% is mandatory to write the final exam.
• If the student loses his book, he/she will have to rewrite all the lab details in the lab

record.
• Questions for lab tests and examination are not necessarily limited to the questions

in the manual but may involve some variations and/or combinations of the
questions.

• A sample note preparation is given as a model for observation.

THE STUDENTS SHOULD NOT
• Bring mobile phones or any other electronic gadgets to the lab.
• Go out of the lab without permission.

LAB NO.: 1 Date:

Objective:

Basic Symmetric Key Ciphers

 To familiarize with Substitution Ciphers.

 To understand the working of transposition ciphers.

Introduction
Symmetric key ciphers use the same key to encrypt and decrypt data. They are often used

in combination with other algorithms for symmetric encryption schemes.

Symmetric key cryptography schemes are categorized as stream ciphers and block ciphers.

Stream ciphers work on a single bit (byte or computer word) at a time and execute some

form of feedback structure so that the key is repeatedly changing.

Figure 1: Stream Cipher

1

Block Cipher
In a block cipher, a group of plaintext symbols of size m (m > 1) are encrypted together

creating a group of ciphertext of the same size. A single key is used to encrypt the whole

block even if the key is made of multiple values, as shown in Figure 2.

Figure 2: Block Cipher

A block cipher is so-called because the scheme encrypts one block of information at a

time utilizing the same key on each block. In general, the same plaintext block will

continually encrypt to the same ciphertext when using a similar key in a block cipher

whereas the same plaintext will encrypt to different ciphertext in a stream cipher.

Block ciphers can operate in several modes such as Electronic Codebook (ECB), Cipher

Block Chaining (CBC), Cipher Feedback (CFB) and Output Feedback (OFB) mode.

Substitution Ciphers
A substitution cipher replaces one symbol with another. Substitution ciphers can

be categorized as either monoalphabetic ciphers or polyalphabetic ciphers

2

In monoalphabetic substitution, the relationship between a symbol in the plaintext

to a symbol in the ciphertext is always one-to-one. The simplest monoalphabetic cipher is

the additive cipher, shown in Figure 3. This cipher is sometimes called a shift cipher and

sometimes a Caesar cipher.

When the cipher is additive, the plaintext, ciphertext, and key are integers in Z26.

In a multiplicative cipher, the plaintext and ciphertext are integers in Z26; the key is

an integer in Z26*.

Figure 3. Additive Cipher

In polyalphabetic substitution, each occurrence of a character may have a different

substitution. The relationship between a character in the plaintext to a character in the

ciphertext is one-to-many.

 Auto Key Cipher

Transposition Cipher

A transposition cipher does not substitute one symbol for another; instead, it changes

the location of the symbols.

3

 Keyless Transposition Ciphers

 Keyed Transposition Ciphers

 Combining Two Approaches

Lab Exercises

1. Encrypt the message "I am learning information security" using each of the following

ciphers. Ignore the space between words. Decrypt the message to get the original

plaintext:

a) Additive cipher with key = 20

b) Multiplicative cipher with key = 15

c) Affine cipher with key = (15, 20)

2. Encrypt the message "the house is being sold tonight" using each of the following

ciphers. Ignore the space between words. Decrypt the message to get the original

plaintext:

a) Vigenere cipher with key: "dollars"

b) Autokey cipher with key = 7

3. Use the Playfair cipher to encipher the message "The key is hidden under the door pad".

The secret key can be made by filling the first and part of the second row with the word

"GUIDANCE" and filling the rest of the matrix with the rest of the alphabet.

4. Use a Hill cipher to encipher the message "We live in an insecure world". Use the

following key:

 = 𝐾 [03 03

02 07]

4

5. John is reading a mystery book involving cryptography. In one part of the book, the

author gives a ciphertext "CIW" and two paragraphs later the author tells the reader that

this is a shift cipher and the plaintext is "yes". In the next chapter, the hero found a tablet

in a cave with "XVIEWYWI" engraved on it. John immediately found the actual meaning

of the ciphertext. Identify the type of attack and plaintext.

6. Use a brute-force attack to decipher the following message. Assume that you know it is

an affine cipher and that the plaintext "ab" is enciphered to "GL":

XPALASXYFGFUKPXUSOGEUTKCDGEXANMGNVS

Additional Exercises

1. Use a brute-force attack to decipher the following message enciphered by Alice using

an additive cipher. Suppose that Alice always uses a key that is close to her birthday,

which is on the 13th of the month:

NCJAEZRCLAS/LYODEPRLYZRCLASJLCPEHZDTOPDZOLN&BY

2. Eve secretly gets access to Alice's computer and using her cipher types "abcdefghi".

The screen shows "CABDEHFGL". If Eve knows that Alice is using a keyed transposition

cipher, answer the following questions:

a) What type of attack is Eve launching?

b) What is the size of the permutation key?

c) Use the Vigenere cipher with keyword "HEALTH" to encipher the message "Life

is full of surprises".

5

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 2 Date:

Objective:

Advanced Symmetric Key Ciphers

 To understand the working of DES and AES algorithms.

 To implement AES and DES algorithm.

 Analyze the performance of AES and DES algorithms

Introduction:
DES:

The Data Encryption Standard (DES) is a symmetric-key block cipher published by the

National Institute of Standards and Technology (NIST)

The encryption process is made of two permutations (P-boxes, initial and final

permutations, and sixteen Feistel rounds as shown in Figure 4

Figure 4: General structure of DES

6

Initial Permutation (IP): The 64-bit plaintext block is permuted according to a fixed

table, shuffling the bits to create a new order.

Key Schedule Generation: The 56-bit key is divided into two 28-bit halves. Each half is

then rotated and permuted according to a predefined schedule to produce sixteen 48-bit

round keys, one for each round of encryption.

16 Rounds of Encryption: The 64-bit block is split into two 32-bit halves, called Left (L)

and Right (R).

Figure 5: Single Round of DES Algorithm

Single round of DES is shown in Figure 5. For each of the 16 rounds, a new right half is

generated by expanding the previous right half to 48 bits using the Expansion (E)

function.

7

The expanded right half is XORed with the round key. That result is passed through a

series of substitution boxes (S-boxes), which reduce the 48-bit output back to 32 bits.

The S-box output is then permuted using the Permutation (P) function. The new right

half is XORed with the previous left half. The previous right half becomes the new left

half.

After 16 rounds, the left and right halves are recombined and permuted using the

final permutation (FP).

Final Permutation (FP): The combined left and right halves are permuted according to a

fixed table to produce the final 64-bit ciphertext block.

The Advanced Encryption Standard (AES):

AES is a symmetric-key block cipher published by the National Institute of Standards

and Technology (NIST) in December 2001. AES is a non-Feistel cipher that encrypts

and decrypts a data block of 128 bits. It uses 10, 12, or 14 rounds. The key size, which

can be 128, 192, or 256 bits, depends on the number of rounds.

Main components of AES are as follows as shown in Figure 6.

Figure 6: General design of AES encryption cipher
8

Initial Round: AddRoundKey: Each byte of the state is combined with a round key

using the XOR operation.

Main Rounds (Repeated for 9, 11, or 13 times depending on key size):

SubBytes: A non-linear substitution step where each byte is replaced with another byte

using an S-box (substitution box).

ShiftRows: A transposition step where each row of the state is shifted cyclically by a

certain number of bytes.

MixColumns: A mixing operation which operates on the columns of the state,

combining the four bytes in each column.

AddRoundKey: Each byte of the state is combined with a round key using the XOR

operation.

Final Round: It has SubBytes, ShiftRows and AddRoundKey steps

Figure 7: Structure of each round at the encryption site

9

To provide security, AES uses four types of transformations: substitution, permutation,

mixing, and key-adding.

Detailed description about each type of transformation is as follows:

Substitution

The first transformation, SubBytes, is used at the encryption site. To substitute a byte,

we interpret the byte as two hexadecimal digits.

Transformation Using the GF(28) Field

AES also defines the transformation algebraically using the GF(28) field with the

irreducible polynomials (x8 + x4 + x3+ x + 1)

The SubBytes and InvSubBytes transformations are inverses of each other.

Another transformation found in a round is shifting, which permutes the bytes as shown

in Figure 8. In the encryption, the transformation is called ShiftRows.

Figure 8: ShiftRows transformation

10

InvShiftRows

In the decryption, the transformation is called InvShiftRows and the shifting is to the

right.

MixColumns

The MixColumns transformation operates at the column level; it transforms each column

of the state to a new column. The MixColumns and InvMixColumns transformations are

inverses of each other.

Key Adding

AddRoundKey proceeds one column at a time. AddRoundKey adds a round key word

with each state column matrix; the operation in AddRoundKey is matrix addition.

Lab Exercises:

1. Encrypt the message "Confidential Data" using DES with the following key:

"A1B2C3D4". Then decrypt the ciphertext to verify the original message.

2. Encrypt the message "Sensitive Information" using AES-128 with the following

key: "0123456789ABCDEF0123456789ABCDEF". Then decrypt the ciphertext to

verify the original message.

3. Compare the encryption and decryption times for DES and AES-256 for the

message "Performance Testing of Encryption Algorithms". Use a standard

implementation and report your findings.

4. Encrypt the message "Classified Text" using Triple DES with the key

"1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF". Then

decrypt the ciphertext to verify the original message.

11

5. Encrypt the message "Top Secret Data" using AES-192 with the key

"FEDCBA9876543210FEDCBA9876543210". Show all the steps involved in the

encryption process (key expansion, initial round, main rounds, final round).

Additional Exercises:

1. Using DES and AES (128, 192, and 256 bits key).encrypt the five different messages

using same key.

a. Consider different modes of operation

b. Plot the graph which shows execution time taken by each technique.

c. Compare time taken by different modes of operation

2. Encrypt the following block of data using DES with the key "A1B2C3D4E5F60708".

The data to be encrypted is: Mathematica

Block1:

54686973206973206120636f6e666964656e7469616c206d657373616765

Block2:

416e64207468697320697320746865207365636f6e6420626c6f636b

a. Provide the ciphertext for each block.

b. Decrypt the ciphertext to retrieve the original plaintext blocks.

3. Using AES-256, encrypt the message "Encryption Strength" with the key

"0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDE

F". Then decrypt the ciphertext to verify the original message.

4. Encrypt the message "Secure Communication" using DES in Cipher Block Chaining

(CBC) mode with the key "A1B2C3D4" and an initialization vector (IV) of "12345678".

Provide the ciphertext and then decrypt it to retrieve the original message.

12

5. Encrypt the message "Cryptography Lab Exercise" using AES in Counter (CTR)

mode with the key "0123456789ABCDEF0123456789ABCDEF" and a nonce of

"0000000000000000". Provide the ciphertext and then decrypt it to retrieve the original

message.

13

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR
LAB NO.: 3 Date:

Objective:

Asymmetric Key Ciphers

 To demonstrate the ability to generate, use, and understand the public and private

keys in various asymmetric encryption schemes.

 To understand the performance implications of different asymmetric encryption

algorithms.

Introduction

Asymmetric algorithms rely on one key for encryption and a different but related key for

decryption. These algorithms have the following important characteristics:

 It is computationally infeasible to determine the decryption key given only

knowledge of cryptographic algorithms and encryption keys.

 Either of the two related keys can be used for encryption, with the other used for

decryption

14

THE RSA ALGORITHM

The RSA scheme is a cipher in which the plaintext and ciphertext are integers between 0

and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is

less than 21024. We examine RSA in this section in some detail, beginning with an

explanation of the algorithm. Then we examine some of the computational and

cryptanalytical implications of RSA. RSA uses the mathematical properties of prime

numbers and modular arithmetic.

Public keys are used for encryption, and private keys are used for decryption. The security

of RSA relies on the difficulty of factoring large composite numbers into their prime

factors. RSA is widely used for secure data transmission, digital signatures, and key

exchange mechanisms due to its robustness and security features

Key Generation

Generate Two Large Prime Numbers: Choose two distinct large prime numbers, p and

q. These primes should be large enough to ensure the security of the RSA algorithm.

15

Compute the Modulus:

Calculate n=p×q; n is used as the modulus for both the public and private keys.

Compute Euler's Totient Function: Calculate ϕ(n)=(p−1)×(q−1).

ϕ(n) represents the number of integers less than n that are relatively prime to n.

Choose the Public Exponent: Select an integer ee such that 1<e<ϕ(n) and gcd(e,ϕ(n))=1.

The public exponent e is typically chosen as a small prime number like 3 or 65537 for

efficiency.

Compute the Private Exponent: Calculate the private exponent d such that

d×e≡1(modϕ(n)). d is the modular multiplicative inverse of ee modulo ϕ(n).

Public and Private Keys: The public key consists of (n,e). The private key consists of

(n,d).

Encryption

Convert the Message: Convert the plaintext message M into an integer m such that

0≤m<n. This can be done using a suitable padding scheme to ensure the message is within

the valid range.

Encrypt the Message: Compute the ciphertext c using the public key: c=me mod  n

Decryption

Decrypt the Ciphertext: Compute the plaintext message m using the private key: m=cd

mod n

Convert the Integer Back to Message: Convert the integer m back to the original plaintext

message M.

ELGAMAL Encryption Algorithm

The ElGamal encryption algorithm is an asymmetric key encryption algorithm based on

the Diffie-Hellman key exchange. It was designed by Taher ElGamal in 1985 and

provides both encryption and digital signature functionalities.
16

Key Components

 Public Parameters:

A large prime number p.

A generator g of the multiplicative group of integers modulo p.

Private Key: A random integer x such that 1≤x≤p−2.

Public Key:

Compute y=gx mod p. The public key is the tuple (p,g,y).

Key Generation

 Choose a large prime number p.

 Choose a generator g for the multiplicative group of integers modulo p.

 Select a private key x where 1≤x≤p−2

 Compute the public key component y as y=gxmod  p.

Public key: (p, g, y)

Private key: x

Encryption

 Convert the plaintext message M into an integer m such that 0≤m<p.

 Choose a random integer k such that 1≤k≤p−2.

 Compute the ciphertext components:

 c1=gkmod  p

 c2=m y⋅ kmod  p

 Ciphertext: (c1 ,c2)

17

Decryption

 Use the private key x to compute: s=c1xmod  p

 Compute the plaintext message m as: m=c2 s⋅ −1mod  p

Here, s−1 is the modular inverse of s modulo p. Plaintext: M

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is an asymmetric encryption technique based on the

algebraic structure of elliptic curves over finite fields. It offers significant advantages over

traditional RSA encryption, such as smaller key sizes for equivalent security levels and

faster computational speeds.

Key Components

Elliptic Curve Definition:

An elliptic curve over a finite field Fp is defined by an equation of the form y2=x3+ax+b

mod p, where a and b are constants defining the curve's shape, and p is a prime number.

Base Point G (Generator):

A specific point on the curve used as the base for generating keys and performing

operations.

Private Key d: A random integer d chosen as the private key.

Public Key Q: The public key is computed as Q=d G, where .(dot) denotes elliptic curve⋅
point multiplication.

Key Generation

Curve Parameters: Choose a suitable elliptic curve (e.g., secp256k1) defined over a

finite field Fp . Select curve parameters a, b, and a prime modulus p.

18

Base Point G Selection: Choose a base point G on the elliptic curve.

Private Key Generation: Generate a random integer d such that 1≤d<order of G.

Public Key Computation: Compute the public key Q as Q=d G. ⋅

Public key: Q

Private key: d

Encryption and Decryption

ECC is primarily used for key exchange rather than direct encryption of messages. The

Diffie-Hellman key exchange and elliptic curve DSA (ECDSA) are commonly used

protocols based on ECC for secure communication and digital signatures

Lab Exercises:

1. Using RSA, encrypt the message "Asymmetric Encryption" with the public key (n,

e). Then decrypt the ciphertext with the private key (n, d) to verify the original

message.

2. Using ECC (Elliptic Curve Cryptography), encrypt the message "Secure

Transactions" with the public key. Then decrypt the ciphertext with the private key

to verify the original message.

3. Given an ElGamal encryption scheme with a public key (p, g, h) and a private key

x, encrypt the message "Confidential Data". Then decrypt the ciphertext to retrieve

the original message.

4. Design and implement a secure file transfer system using RSA (2048-bit) and ECC

(secp256r1 curve) public key algorithms. Generate and exchange keys, then

encrypt and decrypt files of varying sizes (e.g., 1 MB, 10 MB) using both

algorithms. Measure and compare the performance in terms of key generation

time, encryption/decryption speed, and computational overhead. Evaluate the

security and efficiency of each algorithm in the context of file transfer, considering
19

factors such as key size, storage requirements, and resistance to known attacks.

Document your findings, including performance metrics and a summary of the

strengths and weaknesses of RSA and ECC for secure file transfer.

5. As part of a project to enhance the security of communication in a peer-to-peer file

sharing system, you are tasked with implementing a secure key exchange

mechanism using the Diffie-Hellman algorithm. Each peer must establish a shared

secret key with another peer over an insecure channel. Implement the Diffie-

Hellman key exchange protocol, enabling peers to generate their public and private

keys and securely compute the shared secret key. Measure the time taken for key

generation and key exchange processes.

Additional Exercises:

1. With the ElGamal public key (p = 7919, g = 2, h = 6465) and the private key x =

2999, encrypt the message "Asymmetric Algorithms". Decrypt the resulting

ciphertext to verify the original message.

2. Using ECC (Elliptic Curve Cryptography), encrypt the message "Secure

Transactions" with the public key. Then decrypt the ciphertext with the private key

to verify the original message.

3. Encrypt the message "Cryptographic Protocols" using the RSA public key (n, e)

where n = 323 and e = 5. Decrypt the ciphertext with the private key (n, d) where d

= 173 to confirm the original message

4. You are tasked with implementing a secure communication system for a healthcare

organization to exchange sensitive patient information securely between doctors

and hospitals. Implement the ElGamal encryption scheme to encrypt patient

records and medical data, ensuring confidentiality during transmission. Generate

public and private keys using the secp256r1 curve and use ElGamal encryption to

encrypt patient data with the recipient's public key and decrypt it with the

20

recipient's private key. Measure the performance of encryption and decryption

processes for data of varying sizes.

5. You are conducting a study to evaluate the performance and security of RSA and

ElGamal encryption algorithms in securing communication for a government

agency. Implement both RSA (using 2048-bit keys) and ElGamal (using the

secp256r1 curve) encryption schemes to encrypt and decrypt sensitive messages

exchanged between agencies. Measure the time taken for key generation,

encryption, and decryption processes for messages of various sizes (e.g., 1 KB, 10

KB). Compare the computational efficiency and overhead of RSA and ElGamal

algorithms. Perform the same for ECC with RSA and ElGamal.

21

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 4 Date:

Objective:

Advanced Asymmetric Key Ciphers

 Implement and compare the performance of multiple asymmetric encryption

algorithms (e.g., RSA, ElGamal, Rabin) in a controlled environment, measuring

factors such as encryption/decryption speed and key generation time.

 Design and develop a modular key management system capable of handling

various cryptographic protocols, with emphasis on scalability, security, and ease

of integration.

 Create a flexible framework for testing different access control mechanisms in

cryptographic systems, allowing for easy implementation and evaluation of

various policies and revocation strategies

Introduction

Asymmetric Encryption Algorithms: Asymmetric encryption, also known as public-

key cryptography, uses a pair of mathematically related keys: a public key for encryption

and a private key for decryption. This approach allows secure communication without

the need to share secret keys. Common asymmetric algorithms include RSA, ElGamal,

and Rabin. Each has its own mathematical foundations and security properties, making

comparative analysis valuable for understanding their strengths and weaknesses in

different scenarios.

Key Management Systems: Key management is a critical aspect of cryptographic

systems, encompassing the generation, exchange, storage, use, and replacement of

cryptographic keys. A robust key management system ensures the security and integrity

of encrypted communications. It must handle tasks such as key generation, distribution,

storage, rotation, and revocation. The challenges in key management increase with the
22

scale and complexity of the system, especially in distributed environments.

Access Control in Cryptographic Systems: Access control in cryptography involves

mechanisms to restrict access to encrypted data or cryptographic operations. This

includes managing who can encrypt or decrypt data, as well as controlling access to

keys. Implementing flexible access control policies is crucial for maintaining security in

various scenarios, from simple user authentication to complex, attribute-based access

control systems. The ability to revoke access and update policies dynamically is also an

important consideration in modern cryptographic systems.

Mathematical Foundations

RSA Algorithm:

1. Key Generation:

 - Choose two large prime numbers p and q

 - Compute n = p * q

 - Compute φ(n) = (p-1) * (q-1)

 - Choose e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1

 - Compute d such that d * e ≡ 1 (mod φ(n))

 - Public key: (n, e), Private key: (n, d)

 2. Encryption:

 For plaintext m, ciphertext c = m^e mod n

3. Decryption:

 m = c^d mod n

ElGamal Algorithm:

1. Key Generation:

23

 - Choose a large prime p and a generator g of the multiplicative group of integers

modulo p

 - Choose a random integer x, 1 < x < p-1

 - Compute y = g^x mod p

 - Public key: (p, g, y), Private key: x

2. Encryption:

 - Choose a random k, 1 < k < p-1

 - Compute c1 = g^k mod p

 - Compute s = y^k mod p

 - For plaintext m, compute c2 = m * s mod p

 - Ciphertext: (c1, c2)

3. Decryption:

 - Compute s = c1^x mod p

 - Compute m = c2 * s^(-1) mod p

Rabin Algorithm:

1. Key Generation:

 - Choose two large primes p and q, where p ≡ q ≡ 3 (mod 4)

 - Compute n = p * q

 - Public key: n, Private key: (p, q)

2. Encryption:

 For plaintext m, ciphertext c = m^2 mod n

3.Decryption:

 - Compute mp = c^((p+1)/4) mod p

24

 - Compute mq = c^((q+1)/4) mod q

 - Use Chinese Remainder Theorem to find four square roots:

 r1 = (yp * p * mq + yq * q * mp) mod n

 r2 = n - r1

 r3 = (yp * p * mq - yq * q * mp) mod n

 r4 = n - r3

 where yp * p + yq * q = 1

 - One of these roots is the original message m

Each of these algorithms has its own unique mathematical properties that contribute to

its security and performance characteristics. RSA relies on the difficulty of factoring

large numbers, ElGamal is based on the discrete logarithm problem, and Rabin's security

is tied to the difficulty of finding square roots modulo a composite number.

Key Management Systems:

1. Key Entropy:

 Entropy H of a key K with n possible values, each with probability p(i):

 H(K) = -∑(i=1 to n) p(i) * log2(p(i))

2. Key Derivation Function (KDF):

 DK = KDF(Key, Salt, Iterations)

 Where DK is the derived key, Key is the original key or password, Salt is a random

value, and Iterations is the number of times the function is applied.

3. Key Rotation:

 For a system with N keys and a rotation period of T:

 Rotation Rate = N / T

4. Key Expiry:

 If a key K is created at time t0 with lifetime L:

 Expiry Time = t0 + L

25

5. Diffie-Hellman Key Exchange:

 Public parameters: prime p, generator g

 Alice computes: A = g^a mod p

 Bob computes: B = g^b mod p

 Shared secret: K = A^b mod p = B^a mod p = g^(ab) mod p

Access Control in Cryptographic Systems:

1. Role-Based Access Control (RBAC):

 Access(User, Object) = Role : HasRole(User, Role) CanAccess(Role, Object) ∃ ∧

2. Attribute-Based Access Control (ABAC):

 Access(User, Object, Environment) = f(UserAttributes, ObjectAttributes,

EnvironmentAttributes)

 Where f is a policy function evaluating to true or false.

3. Bell-LaPadula Model:

 - Simple Security Property: S(Subject) ≥ C(Object) for read access

 - *-Property: S(Subject) ≤ C(Object) for write access

4. Mandatory Access Control (MAC):

 AccessGranted = (SubjectClearance ≥ ObjectClassification) ∧

PolicyRulesatisfied

5. Discretionary Access Control (DAC):

 AccessMatrix[Subject, Object] = {Rights}

Where Rights could be Read, Write, Execute, etc.

6. Time-based Access Control

Access (User, Object, Time) = (Time ≥ StartTime) (Time ≤ EndTime) ∧ ∧

OtherConditions

7. Probabilistic Access Control:

 P(Access Granted | Conditions) = f(UserTrustLevel, ObjectSensitivity,

EnvironmentRisk)

26

 Where P is probability and f is a function mapping conditions to a probability.

These equations and mathematical concepts form the basis for implementing and

analyzing key management and access control systems. They allow for quantitative

assessment of security properties, guide the design of secure systems, and provide a

framework for evaluating the effectiveness of different approaches in cryptographic

access control.

Lab exercises

Question 1

SecureCorp is a large enterprise with multiple subsidiaries and business units located

across different geographical regions. As part of their digital transformation initiative,

the IT team at SecureCorp has been tasked with building a secure and scalable

communication system to enable seamless collaboration and information sharing

between their various subsystems.

The enterprise system consists of the following key subsystems:

1. Finance System (System A): Responsible for all financial record-keeping, accounting,

and reporting.

2. HR System (System B): Manages employee data, payroll, and personnel related

processes.

3. Supply Chain Management (System C): Coordinates the flow of goods, services, and

information across the organization's supply chain

These subsystems need to communicate securely and exchange critical documents, such

financial reports, employee contracts, and procurement orders, to ensure the enterprise's

overall efficiency.

The IT team at SecureCorp has identified the following requirements for the secure

communication and document signing solution:

1. Secure Communication: The subsystems must be able to establish secure

communication channels using a combination of RSA encryption and Diffie-Hellman

27

key exchange.

2. Key Management: SecureCorp requires a robust key management system to generate,

distribute, and revoke keys as needed to maintain the security of the enterprise system.

3. Scalability: The solution must be designed to accommodate the addition of new

subsystems in the future as SecureCorp continues to grow and expand its operations.

Implement a Python program which incorporates the requirements.

Question 2:

HealthCare Inc., a leading healthcare provider, has implemented a secure patient data

management system using the Rabin cryptosystem. The system allows authorized

healthcare professionals to securely access and manage patient records across multiple

hospitals and clinics within the organization. Implement a Python-based centralized key

management service that can:

• Key Generation: Generate public and private key pairs for each hospital and clinic

using the Rabin cryptosystem. The key size should be configurable (e.g., 1024 bits).

• Key Distribution: Provide a secure API for hospitals and clinics to request and receive

their public and private key pairs.

• Key Revocation: Implement a process to revoke and update the keys of a hospital or

clinic when necessary (e.g., when a facility is closed or compromised).

• Key Renewal: Automatically renew the keys of all hospitals and clinics at regular

intervals (e.g., every 12 months) to maintain the security of the patient data management

system.

• Secure Storage: Securely store the private keys of all hospitals and clinics, ensuring

that they are not accessible to unauthorized parties.

• Auditing and Logging: Maintain detailed logs of all key management operations, such

as key generation, distribution, revocation, and renewal, to enable auditing and

compliance reporting.

• Regulatory Compliance: Ensure that the key management service and its operations are

28

compliant with relevant data privacy regulations (e.g., HIPAA).

• Perform a trade-off analysis to compare the workings of Rabin and RSA.

Additional Questions

Question 1

DigiRights Inc. is a leading provider of digital content, including e-books, movies, and

music. The company has implemented a secure digital rights management (DRM)

system using the ElGamal cryptosystem to protect its valuable digital assets.

Implement a Python-based centralized key management and access control service that

can:

• Key Generation: Generate a master public-private key pair using the ElGamal

cryptosystem. The key size should be configurable (e.g., 2048 bits).

• Content Encryption: Provide an API for content creators to upload their digital content

and have it encrypted using the master public key.

• Key Distribution: Manage the distribution of the master private key to authorized

customers, allowing them to decrypt the content.

• Access Control: Implement flexible access control mechanisms, such as:

 Granting limited-time access to customers for specific content

 Revoking access to customers for specific content

 Allowing content creators to manage access to their own content

• Key Revocation: Implement a process to revoke the master private key in case of a

security breach or other emergency.

• Key Renewal: Automatically renew the master public-private key pair at regular

intervals (e.g., every 24 months) to maintain the security of the DRM system.

• Secure Storage: Securely store the master private key, ensuring that it is not accessible

to unauthorized parties.

• Auditing and Logging: Maintain detailed logs of all key management and access

control operations to enable auditing and troubleshooting.

29

Question 2

Suppose that XYZ Logistics has decided to use the RSA cryptosystem to secure their

sensitive communications. However, the security team at XYZ Logistics has discovered

that one of their employees, Eve, has obtained a partial copy of the RSA private key and

is attempting to recover the full private key to decrypt the company's communications.

Eve's attack involves exploiting a vulnerability in the RSA key generation process,

where the prime factors (p and q) used to generate the modulus (n) are not sufficiently

large or random.

Develop a Python script that can demonstrate the attack on the vulnerable RSA

cryptosystem and discuss the steps to mitigate the attack.

30

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 5 Date:

Objective:

 Hashing

 To implement user defined hashing function.

 To demonstrate the application of hash function.

Introduction
A hash function H takes an input data block M of variable length and generates a fixed-

size hash value h=H(M). An effective hash function ensures that applying it to a large set

of inputs yields outputs that are evenly distributed and seemingly random. The primary

goal of a hash function is to maintain data integrity, such that any change in the input M,

even by a single bit, will likely result in a different hash value. For security purposes, a

special type of hash function, known as a cryptographic hash function, is used. This

algorithm has two key properties:

• The one-way property, which makes it computationally infeasible to find a data object

that matches a pre-specified hash result.

• The collision-free property, which makes it computationally infeasible to find two

distinct data objects that produce the same hash result.

Due to these properties, cryptographic hash functions are commonly employed to

verify whether data has been altered.

Figure 5.1 illustrates how a cryptographic hash function operates. Generally, the input

data is padded to make its length an integer multiple of a specific fixed size (e.g., 1024

bits). This padding includes a field that represents the length of the original message in

bits. The length field acts as a security measure, making it more challenging for an

attacker to create a different message with the same hash value. [Ref: Cryptography

and Network Security: Principles and Practice 7th Global Edition]

31

Figure 5.1 Cryptographic Hash Function

Lab Exercises

1. Implement the hash function in Python. Your function should start with an initial hash

value of 5381 and for each character in the input string, multiply the current hash value

by 33, add the ASCII value of the character, and use bitwise operations to ensure

thorough mixing of the bits. Finally, ensure the hash value is kept within a 32-bit range

by applying an appropriate mask.

2. Using socket programming in Python, demonstrate the application of hash functions

for ensuring data integrity during transmission over a network. Write server and client

scripts where the server computes the hash of received data and sends it back to the

client, which then verifies the integrity of the data by comparing the received hash with

the locally computed hash. Show how the hash verification detects data corruption

or tampering during transmission.

3. Design a Python-based experiment to analyze the performance of MD5, SHA-1, and

SHA-256 hashing techniques in terms of computation time and collision resistance.

Generate a dataset of random strings ranging from 50 to 100 strings, compute the hash

values using each hashing technique, and measure the time taken for hash computation.

Implement collision detection algorithms to identify any collisions within the hashed

32

dataset.

Additional Exercise

1. Write server and client scripts where the client sends a message in multiple parts to

the server, the server reassembles the message, computes the hash of the reassembled

message, and sends this hash back to the client. The client then verifies the integrity of

the message by comparing the received hash with the locally computed hash of the

original message.

33

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 6 Date:

Objective:

 Digital Signature

 Demonstrate the use of digital signatures

 Demonstrate the verification of a digital signature

Introduction
A digital signature is a mathematical technique used to validate the authenticity and

integrity of a digital message. A digital signature is the equivalent of a handwritten

signature. Digital signatures can actually be far more secure. The purpose of a digital

signature is to prevent the tampering and impersonation in digital communications.

Using Digital Signatures

In this part, you will use a website to verify a document signature between Alice and

Bob. Alice and Bob share a pair of private and public RSA keys. Each of them uses their

private key to sign a legal document. They then send the documents to each other. Both

Alice and Bob can verify each other’s signature with the public key. They must also

agree on a shared public exponent for calculation

Table 1 – RSA Public and Private Keys

34

Step 1: Sign the Document.

Alice signs a legal document and send it to Bob using the RSA public and private keys

shown in the table 1. Now Bob will have to verify Alice’s digital signature in order to

trust the authenticity of the electronic document.

Step 2: Verify Digital Signature.

Bob receives the document with a digital signature shown in the table below.

Table 2 – Alice’s Digital Signature

a. Copy and paste the public and private keys from Table 1 above into the Public

Modulus and Private Exponent boxes on the website as shown in the Figure 6.1.

b. Make sure the Public Exponent is 10001.

c. Paste Alice’s digital signature from Table 2 in the box labeled text on the website as

shown.

d. Now BOB can verify the digital signature by clicking the Verify button near the

bottom center of the website. Whose signature is identified?

Alice’s name should be displayed.

Step 3: Generate a Response Signature.

Bob receives and verifies Alice’s electronic document and digital signature. Now Bob

creates an electronic document and generates his own digital signature using the private

RSA Key in Table 1 (Note: Bob’s name is in all capital letters).

35

Figure 6.1 Online Digital Signature Tool

Table 4 – BOB Digital Signature

36

Bob sends the electronic document and digital signature to Alice.

Step 4: Verify Digital Signature.

a. Copy and paste the public and private keys from Table 1 above into the Public

Modulus and Private Exponent boxes on the website as shown in the picture above.

b. Make sure the Public Exponent is 10001.

c. Paste Bob’s digital signature from Table 4 in the box labeled text on the website as

shown above.

d. Now Alice can verify the digital signature by clicking the Verify button near the

bottom center of the website. Whose signature is identified?

Bob’s name should be displayed.

Part 2: Create Your Own Digital Signature

Now that you see how digital signatures work, you can create your own digital signature.

Step 1: Generate a New Pair of RSA Keys.

Go to the website tool and generate a new set of RSA public and private keys.

a. Delete the contents of the boxes labeled Public Modulus, Private Modulus and Text.

Just use your mouse to highlight the text and press the delete key on your keyboard.

b. Make sure the “Public Exponent” box has 10001.

c. Generate a new set of RSA keys by clicking the Generate button near the bottom right

of the website.

d. Copy the new keys in Table 5.

e. Now type in your full name into the box labeled Text and click Sign.

37

Part 3: Exchange and Verify Digital Signatures

Now you can use this digital signature.

Step 1: Exchange your new public and private keys in Table-5 with your lab partner.

a. Record your lab partner’s public and private RSA keys from their Table-5.

b. Record both keys in the table below.

 Now exchange their digital signature from their Table-6. Record the digital signature in

the table below

Step 2: Verify Lab Partners Digital Signature

a. To verify your lab partner’s digital signature, paste his or her public and private keys

in the appropriate boxes labeled Public and Private modulus on the website.

b. Now paste the digital signature in the box labeled Text.

c. Now verify his or her digital signature by clicking the button labeled verify.

d. What shows up in the Text box?

Answers will vary.

38

Lab Exercises

1. Try using the Elgammal, Schnor asymmetric encryption standard and verify the above

steps.

2. Try using the Diffie-Hellman asymmetric encryption standard and verify the above

steps.

3. Try the same in a client server-based scenario and record your observation and

analysis.

Additional Exercise

1. Explore the link https://www.nmichaels.org/rsa.py for better understanding.

Demonstrate CIA traid using RSA encryption and digital signature along with SHA

hashing.

39

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 7 Date:

Objective:

Partial Homomorphic Encryption

 Implement and Understand Additive Homomorphic Encryption

 Implement and Understand Multiplicative Homomorphic Encryption

 Evaluate and Apply Partial Homomorphic Encryption

Introduction to Homomorphic Encryption

Homomorphic encryption allows computations on encrypted data without decryption.

This

enables secure analysis of sensitive information while preserving privacy. There are two

main types of HE:

 Partially Homomorphic Encryption (PHE): Supports either addition or

multiplication homomorphically.

 Fully Homomorphic Encryption (FHE): Supports both addition and

multiplication homomorphically.

Partially Homomorphic Encryption (PHE)

PHE allows performing either addition or multiplication on encrypted data. Some

evident PHE schemes include Paillier and ElGamal.

Homomorphic Addition (Paillier Cryptosystem)

This exercise demonstrates homomorphic addition using the Paillier Cryptosystem.

Problem: Add two encrypted integers (a and b).

This program demonstrates how to perform homomorphic addition on encrypted integers

using the Paillier Cryptosystem.

Key functionalities and Explanations:

 generate_keypair: Generates a public/private key pair for encryption and decryption.

 encrypt: Encrypts a message (integer) using the public key and random blinding for

security.
40

 decrypt: Decrypts a ciphertext using the private key (optional, for demonstration

only).

 homomorphic_add: Performs homomorphic addition on two encrypted messages.

This works because multiplying encrypted messages under Paillier corresponds to

adding the original messages.

Python Code:

from Crypto.PublicKey import RSA

from Crypto.Random import get_random_bytes

def generate_keypair(nlength=1024):

 """Generates a public/private key pair"""

 key = RSA.generate(nlength)

 pub_key = key.publickey()

 return pub_key, key

def encrypt(pub_key, message):

 """Encrypts a message using the public key"""

 random_bytes = get_random_bytes(16)

 p, q = pub_key.n // 2, pub_key.n // 2 + 1

 while math.gcd(p, q) != 1:

 p, q = pub_key.n // 2, pub_key.n // 2 + 1

 m_dot = pow(message, 2, pub_key.n)

 r_dot = pow(int.from_bytes(random_bytes, byteorder='big'), 2, pub_key.n)

 ciphertext = m_dot * r_dot % pub_key.n

 return ciphertext

def decrypt(priv_key, ciphertext):

 """Decrypts a ciphertext using the private key"""

41

 p = priv_key.n // 2

 l = (ciphertext - 1) // pub_key.n

 message = math.floor(l * pow(p, -1, priv_key.n))

 return message

def homomorphic_add(ciphertext1, ciphertext2, pub_key):

 """Performs homomorphic addition on ciphertexts"""

 return ciphertext1 * ciphertext2 % pub_key.n

Generate key pair

pub_key, priv_key = generate_keypair()

Encrypt integers

a = 5

b = 10

ciphertext_a = encrypt(pub_key, a)

ciphertext_b = encrypt(pub_key, b)

Homomorphic addition

ciphertext_sum = homomorphic_add(ciphertext_a, ciphertext_b, pub_key)

Decrypt the sum (optional)

decrypted_sum = decrypt(priv_key, ciphertext_sum)

print(f"Decrypted sum: {decrypted_sum}")

print(f"Ciphertext of a: {ciphertext_a}")

print(f"Ciphertext of b: {ciphertext_b}")

print(f"Ciphertext of a + b: {ciphertext_sum}"

42

Secure Medical Diagnosis (ElGamal Cryptosystem)

Explanation:

ElGamal uses a public key for encryption and a private key for decryption.

encrypt creates a random blinding factor and encrypts the message.

homomorphic_comparison multiplies ciphertexts with additional manipulation to

achieve encrypted comparison (>).

Decrypting the comparison result (optional) reveals if the first message was greater than

the second.

The diagnosis is made based on the decrypted comparison result (demonstration only,

not recommended in practice).

Problem: Perform a secure diagnosis on encrypted patient data (blood pressure).

• A doctor wants to diagnose patients with high blood pressure (> 130) without

decrypting their actual blood pressure readings.

• Use ElGamal encryption, which supports homomorphic comparison.

Python Code:

from Crypto.Util.Padding import pad, unpad

from Crypto.Random import get_random_bytes

def generate_keypair(p=1024):

 """Generates a public/private key pair"""

 while True:

 x = int.from_bytes(get_random_bytes(p // 8), byteorder='big')

 if pow(2, p - 1, p) == 1 and 1 < x < p-1:

 break

 g = 2

43

 y = pow(g, x, p)

 return ((p, g, y), x) # Public key, private key

def encrypt(pub_key, message):

 """Encrypts a message using the public key"""

 p, g, y = pub_key

 r = int.from_bytes(get_random_bytes(p // 8), byteorder='big')

 while math.gcd(r, p) != 1:

 r = int.from_bytes(get_random_bytes(p // 8), byteorder='big')

 a = pow(g, r, p)

 b = (message * pow(y, r, p)) % p

 return (a, b)

def decrypt(priv_key, ciphertext):

 """Decrypts a ciphertext using the private key"""

 p, g, _ = priv_key

 a, b = ciphertext

 x = priv_key

 message = (b * pow(a, -x, p)) % p

 return message

def homomorphic_comparison(ciphertext1, ciphertext2, pub_key):

 """Performs homomorphic comparison on ciphertexts (greater than)"""

 p, g, y = pub_key

 a1, b1 = ciphertext1

 a2, b2 = ciphertext2

 return (a1 * a2) % p, (b1 * b2 * pow(y, 1, p)) % p # Encrypted result (m1 > m2

44

Generate key pair

pub_key, priv_key = generate_keypair()

Blood pressure readings (already encrypted)

blood_pressure1 = encrypt(pub_key, 120)

blood_pressure2 = encrypt(pub_key, 140)

Homomorphic comparison (encrypted result)

ciphertext_comparison = homomorphic_comparison(blood_pressure1, blood_pressure2,

pub_key)

Decrypt the comparison result (optional - for demonstration only)

decrypted_comparison = decrypt(priv_key, ciphertext_comparison)

print(f"Decrypted comparison: {decrypted_comparison} (True if blood pressure 1 >

blood pressure 2)")

Diagnosis based on the encrypted comparison result

diagnosis = ciphertext_comparison[0] * pow(ciphertext_comparison[1], -1, pub_key[0])

%

pub_key[0]

if diagnosis > 1:

 print("Diagnosis: High Blood Pressure detected.")

else:

 print("Diagnosis: Normal Blood Pressure.")

Key functionalities:

• generate_keypair: Generates a public/private key pair for ElGamal encryption.

• encrypt: Encrypts a message (blood pressure reading) using the public key and a

random factor.

• homomorphic_comparison: Performs homomorphic comparison on two encrypted

45

messages. This leverages ElGamal's properties to create an encrypted result indicating if

one message is greater than the other.

• decrypt (not recommended): While included for demonstration, decrypting the

comparison result in a real-world scenario would reveal sensitive information. Diagnosis

should rely on the encrypted comparison itself.

• Explore additional libraries like PALISADE (https://palisade-crypto.org/) for more

advanced PHE functionalities

Lab Exercises

1. Implement the Paillier encryption scheme in Python. Encrypt two integers (e.g., 15

and 25) using your implementation of the Paillier encryption scheme. Print the

ciphertexts. Perform an addition operation on the encrypted integers without decrypting

them. Print the result of the addition in encrypted form. Decrypt the result of the addition

and verify that it matches the sum of the original integers.

2. Utilize the multiplicative homomorphic property of RSA encryption. Implement a

basic RSA encryption scheme in Python. Encrypt two integers (e.g., 7 and 3) using your

implementation of the RSA encryption scheme. Print the ciphertexts. Perform a

multiplication operation on the encrypted integers without decrypting them. Print the

result of the multiplication in encrypted form. Decrypt the result of the multiplication

and verify that it matches the product of the original integers.

Additional Questions

Implement similar exercise for other PHE operations (like homomorphic multiplication

using ElGamal) or explore different functionalities within Paillier.

1a: Homomorphic Multiplication (ElGamal Cryptosystem): Implement ElGamal

encryption and demonstrate homomorphic multiplication on encrypted messages.

(ElGamal supports multiplication but not homomorphic addition.)

1b: Secure Data Sharing (Paillier): Simulate a scenario where two parties share

46

encrypted data and perform calculations on the combined data without decryption.

1c: Secure Thresholding (PHE): Explore how PHE can be used for secure multi-party

computation, where a certain number of parties need to collaborate on a computation

without revealing their individual data.

1d: Performance Analysis (Benchmarking): Compare the performance of different

PHE schemes (Paillier and ElGamal) for various operations

47

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 8 Date:

Objective:

Searchable Encryption

 Understand the Fundamentals of Searchable Encryption (SE)

 Implement and Perform Encrypted Data Searches

 Analyze the Security and Efficiency Trade-offs

Searchable encryption (SE)

It is a cryptographic technique that enables efficient search operations on encrypted data

without compromising its confidentiality. This paradigm is essential in modern data

management, where data privacy and utility are often conflicting objectives. SE offers a

solution by allowing authorized users to search for specific information within encrypted

datasets without revealing any underlying data.

Core Concepts used in the SE

 Encryption: The foundational layer, where data is transformed into an unreadable

format using cryptographic algorithms. Standard symmetric or asymmetric

encryption techniques can be employed.

 Indexing: A crucial component for enabling search. Data is indexed using

cryptographic primitives to generate searchable representations, often termed

"encrypted indexes." These indexes must allow for efficient search operations

without exposing the underlying data.

 Query Processing: When a search query is issued, it is encrypted and compared

against the encrypted indexes. Matching results are identified, and their

encrypted locations or identifiers are returned. The actual data remains encrypted

until accessed by an authorized user with the decryption key.

48

Categories of S

Symmetric Searchable Encryption (SSE) is a cryptographic primitive designed to

reconcile the conflicting objectives of data confidentiality and searchability. In SSE, a

shared secret key is employed to encrypt data and construct searchable indexes. This

approach enables authorized parties to perform search operations over encrypted data

without compromising the underlying information. While SSE offers advantages in

terms of efficiency compared to its public-key counterpart, it necessitates careful design

to prevent information leakage through the search process and address challenges related

to key management and distribution.

Major Points

• SSE employs a shared secret key for both encryption and decryption.

• SSE offers relatively efficient search performance but suffers from crucial management

challenges.

• Some of the SSE schemes include the Boneh-Goh-Nissim (BGN) and the Cuccioletta-

Damiani-Di-Crescenzo (CDD) schemes.

Public-key searchable Encryption (PKSE) is a cryptographic technique that enables

search operations on encrypted data while maintaining data confidentiality using

asymmetric cryptography. Unlike Symmetric Searchable Encryption (SSE), PKSE

employs a public-key/private-key pair for encryption and decryption. PKSE allows for

flexible access control, as multiple users can encrypt data using the public key, while

only the holder of the corresponding private key can decrypt and search the data. PKSE

offers greater flexibility in key management than SSE but often incurs higher

computational overhead due to public-key operations.

Major Points

• PKSE uses public-key cryptography, where data is encrypted using a public key and

decrypted with the corresponding private key.

• PKSE provides greater flexibility in key management and access control.

49

• Typically, less efficient than SSE due to the computational overhead of public-key

operations.

SSE sample code

import random

from Crypto.Cipher import AES

from Crypto.Random import get_random_bytes

from Crypto.Util.Padding import pad, unpad

import hashlib

def encrypt_data(key, data):

 cipher = AES.new(key, AES.MODE_CBC)

 iv = cipher.iv

 ciphertext = cipher.encrypt(pad(data.encode(), AES.block_size))

 return iv, ciphertext

def decrypt_data(key, iv, ciphertext):

 cipher = AES.new(key, AES.MODE_CBC, iv)

 plaintext = unpad(cipher.decrypt(ciphertext), AES.block_size)

 return plaintext.decode()

def create_index(documents, key):

 index = {}

 for doc_id, doc in documents.items():

 for word in doc.split():

 word_hash = hashlib.sha256(word.encode()).digest()

 if word_hash not in index:

 index[word_hash] = []

50

 index[word_hash].append(doc_id)

 # Encrypt the index

 encrypted_index = {}

 for word_hash, doc_ids in index.items():

 encrypted_index[encrypt_data(key, word_hash)[1]] = [encrypt_data(key, str(doc_id))[1]

for doc_id in doc_ids]

 return encrypted_index

def search(encrypted_index, query, key):

 query_hash = hashlib.sha256(query.encode()).digest()

 encrypted_query_hash = encrypt_data(key, query_hash)[1]

 if encrypted_query_hash in encrypted_index:

 return [decrypt_data(key, *encrypt_data(key, doc_id))[0] for doc_id in

encrypted_index[encrypted_query_hash]]

 else:

 return []

Example usage

documents = {

 "doc1": "this is a document with some words",

 "doc2": "another document with different words",

 "doc3": "yet another document with some common words"

}

key = get_random_bytes(16)

encrypted_index = create_index(documents, key)

query = "document"

results = search(encrypted_index, query, key)

print(results)

51

PKSE Sample Code:

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

from Crypto.Hash import SHA256

import random

def generate_keys():

keyPair = RSA.generate(2048)

pubKey = keyPair.publickey()

privKey = keyPair

return pubKey, privKey

def encrypt_data(pubKey, data):

cipher = PKCS1_OAEP.new(pubKey)

ciphertext = cipher.encrypt(data.encode())

return ciphertext

def decrypt_data(privKey, ciphertext):

cipher = PKCS1_OAEP.new(privKey)

plaintext = cipher.decrypt(ciphertext)

return plaintext.decode()

def create_index(documents, pubKey):

index = {}

for doc_id, doc in documents.items():

for word in doc.split():

word_hash = SHA256.new(word.encode()).digest()

if word_hash not in index:

52

index[word_hash] = []

index[word_hash].append(doc_id)

Encrypt the index

encrypted_index = {}

for word_hash, doc_ids in index.items():

encrypted_index[encrypt_data(pubKey, word_hash)] = [encrypt_data(pubKey,

str(doc_id))

for doc_id in doc_ids]

return encrypted_index

def search(encrypted_index, query, pubKey, privKey):

query_hash = SHA256.new(query.encode()).digest()

encrypted_query_hash = encrypt_data(pubKey, query_hash)

if encrypted_query_hash in encrypted_index:

encrypted_doc_ids = encrypted_index[encrypted_query_hash]

doc_ids = [decrypt_data(privKey, doc_id) for doc_id in encrypted_doc_ids]

return doc_ids

else:

return []

Example usage

documents = {

"doc1": "this is a document with some words",

"doc2": "another document with different words",

"doc3": "yet another document with some common words"

}

53

pubKey, privKey = generate_keys()

encrypted_index = create_index(documents, pubKey)

query = "document"

results = search(encrypted_index, query, pubKey, privKey)

print(results)

Lab Exercise 1: Execute the following for SSE:

1a. Create a dataset: Generate a text corpus of at least ten documents. Each document

should contain multiple words.

1b. Implement encryption and decryption functions: Use the AES encryption and

decryption functions.

1c. Create an inverted index: Build an inverted index mapping word to the list of

document IDs containing those words.

- Encrypt the index using the provided encryption function.

1d. Implement the search function:

- Take a search query as input.

- Encrypt the query.

- Search the encrypted index for matching terms.

- Decrypt the returned document IDs and display the corresponding documents

Lab Exercise 2: Execute the following for PKSE:

2a. Create a dataset:

- Generate a text corpus of at least ten documents. Each document should contain

multiple words.

2b. Implement encryption and decryption functions: Use the Paillier cryptosystem for

encryption and decryption.

2c. Create an encrypted index:

- Build an inverted index mapping word to the list of document IDs containing those

54

words.

- Encrypt the index using the Paillier cryptosystem.

2d. Implement the search function:

o Take a search query as input.

o Encrypt the query using the public key.

o Search the encrypted index for matching terms.

o Decrypt the returned document IDs using the private key.

Additional Questions:

1. Demonstrate how to securely store and transmit data using GnuPG. Additionally,

show how to create a digital signature for the data and verify the signature after

transmission.

2. Configure and use Snort as a Network Intrusion Detection System (NIDS) to monitor

realtime network traffic. Capture network traffic, apply Snort rules, and analyze the logs

to identify any potential intrusions.

55

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

LAB NO.: 09 Date:

Project Design

Objectives:
• To design the UI and data aspectsof the mini project.

Lab exercises:
1. Design the SRS, UML and other aspects related to project

[OBSERVATION SPACE – LAB 09]

56

57

LAB NO.: 10 Date:

Objectives:

PROJECT IMPLEMENTATION

• To analyze the working of the front end and back end altogether.

Lab exercises:
1. Give the implementation details regarding the project.

[OBSERVATION SPACE – LAB 10]

58

LAB NO.: 11 Date:

Objective:

TESTING AND VALIDATION

• To test and validate their mini project.

Lab Exercises:
1. Give the testing and validation details for your project.

[OBSERVATION SPACE – LAB 11]

59

DBS LAB MANUAL REFERENCES

REFERENCES
1. William Stallings, Cryptography and Network Security: Principles and Practice, 7th
edition,Pearson Publications, 2016.
2. Charles P. Pfleeger, Shari Lawrence Pfleeger , Jonathan Margulies, Security in
Computing,5th edition, Prentice Hall, 2015.
3. Michael E. Whitman and Herbert J. Mattord, Principles of Information Security,
5thedition, Cengage Learning, 2015.
4. Mark Stamp, Information Security: Principles and Practice,2nd edition, John Wiley
&Sons, 2011.
5. Behrouz A. Forouzan, Debdeep Mukhopadhyay, Cryptography and Network
Security, 2ndEdition (Revised), Tata McGraw-Hill Education India, 2010.
6. Borko Furht, Darko Kirovski, Multimedia Encryption and Authentication
Techniques andApplications, 1st edition, Taylor and Francis, 2019
7. Xun Yi, Russell Paulet, and Elisa Bertino, Homomorphic Encryption and
Applications ,1stedition, Springer Publishing Company, Incorporated, 2014.
8. Brij B. Gupta, Mamta, Secure Searchable Encryption and Data Management, 1 st

edition,Taylor and Francis, 2021.

	CONTENTS
	Course Objectives
	Course Outcomes
	Evaluation plan
	INSTRUCTIONS TO THE STUDENTS
	In- Lab Session Instructions
	General Instructions for the exercises in Lab
	THE STUDENTS SHOULD NOT
	LAB NO.: 1 Date:
	Introduction
	LAB NO.: 2 Date:
	LAB NO.: 3 Date:
	LAB NO.: 4 Date:
	LAB NO.: 5 Date:
	LAB NO.: 6 Date:
	LAB NO.: 7 Date:
	LAB NO.: 8 Date:
	LAB NO.: 09 Date:
	Lab exercises:
	LAB NO.: 10 Date:
	Lab exercises:
	LAB NO.: 11 Date:
	Lab Exercises:
	REFERENCES

