# pip install pycryptodome import time, json from Crypto.Util import number log=[] def blum_prime(bits): # p ≡ 3 (mod 4) while True: p = number.getPrime(bits) if p % 4 == 3: return p def keygen(bits=512, ttl=10): p, q = blum_prime(bits//2), blum_prime(bits//2) k = {"p":p, "q":q, "n":p*q, "exp":time.time()+ttl, "revoked":False} log.append({"t":time.time(), "ev":"KEYGEN", "n":k["n"]}); return k def publish(k): log.append({"t":time.time(), "ev":"PUBLISH", "n":k["n"]}); return k["n"] def revoke(k): k["revoked"] = True; log.append({"t":time.time(), "ev":"REVOKE"}) def expired(k): return time.time() > k["exp"] def renew(k, ttl=10): revoke(k); k2 = keygen(bits=k["n"].bit_length(), ttl=ttl) log.append({"t":time.time(), "ev":"RENEW"}); return k2 def enc(m, n): return pow(m, 2, n) # c = m^2 mod n def dec(c, k): # return one root via CRT (Rabin has 4 roots) p, q, n = k["p"], k["q"], k["n"] mp, mq = pow(c, (p+1)//4, p), pow(c, (q+1)//4, q) yp, yq = number.inverse(p, q), number.inverse(q, p) return (mp*q*yq + mq*p*yp) % n # Demo k = keygen(ttl=2); n = publish(k) m = 123456789 c = enc(m, n); m1 = dec(c, k) print("ok:", m == m1) time.sleep(2.1) # simulate expiry if expired(k) or k["revoked"]: k = renew(k, ttl=5); n = publish(k) c2 = enc(m, n); m2 = dec(c2, k) print("ok2:", m == m2) print(json.dumps(log, indent=2))