; ======================================================================================== ; array_reversal.asm - Array Reversal Using Swap Algorithm ; ======================================================================================== ; This program demonstrates how to reverse an array in-place using a swap algorithm. ; The algorithm uses two pointers - one starting from the beginning and one from the end ; of the array. Elements are swapped in each iteration, and the pointers move towards ; the center until they meet or cross each other. AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table EXPORT __Vectors ; Export the vector table for external linking __Vectors ; Start of the vector table DCD 0x10001000 ; Stack pointer initial value (points to top of stack) DCD Reset_Handler ; Address of the reset handler (program entry point) ALIGN ; Ensure proper alignment for the next section AREA mycode,CODE,READONLY ; Define the code section as read-only ENTRY ; Mark the entry point of the program EXPORT Reset_Handler ; Export the reset handler function ; ======================================================================================== ; Reset_Handler - Main program execution ; ======================================================================================== ; Algorithm Overview: ; 1. Initialize counter R2 to half the array size (5 iterations for 10 elements) ; 2. Set R0 to point to the start of the array (SRC) ; 3. Set R1 to point to the end of the array (SRC + 36 bytes = last element) ; 4. In each iteration: ; a. Load element from start pointer (R0) into R3 ; b. Load element from end pointer (R1) into R4 ; c. Store R3 to end pointer location and decrement R1 by 4 bytes ; d. Store R4 to start pointer location and increment R0 by 4 bytes ; e. Decrement counter and repeat until counter reaches zero Reset_Handler ; Step 1: Initialize loop counter ; Set R2 to 5 (half of array size 10) - number of swap operations needed MOV R2, #5 ; R2 = 5 (loop counter for 5 swap operations) ; Step 2: Initialize array pointers ; R0 points to the beginning of the array LDR R0, =SRC ; R0 = address of first element in SRC array ; R1 points to the end of the array (SRC + 36 bytes) ; 36 = 9 * 4 bytes (offset to reach the last element from first) LDR R1, =SRC + 36 ; R1 = address of last element in SRC array ; Step 3: Main reversal loop Loop ; Load the element from the start of array into R3 LDR R3, [R0] ; R3 = element at current start position ; Load the element from the end of array into R4 LDR R4, [R1] ; R4 = element at current end position ; Swap: Store start element (R3) to end position ; Use post-decrement addressing: store R3 to [R1], then R1 = R1 - 4 STR R3, [R1], #-4 ; Store R3 to end position and move pointer left ; Swap: Store end element (R4) to start position ; Use post-increment addressing: store R4 to [R0], then R0 = R0 + 4 STR R4, [R0], #4 ; Store R4 to start position and move pointer right ; Decrement loop counter SUBS R2, #1 ; R2 = R2 - 1 (set flags for branch condition) ; Continue loop if counter is not zero BNE Loop ; Branch to Loop if R2 != 0 ; Step 4: Program termination ; Create an infinite loop to stop program execution STOP B STOP ; Branch to STOP label (infinite loop) AREA mydate, DATA, READWRITE ; Define a read-write data section ; ======================================================================================== ; Data Section - Source Array ; ======================================================================================== ; SRC array contains 10 elements (40 bytes total): ; Each element is a 32-bit word in hexadecimal format ; Original array: [32, 12345644, 05, 98, AB, CD, 55, 32, CA, 45] ; After reversal: [45, CA, 32, 55, CD, AB, 98, 05, 12345644, 32] SRC DCD 0x00000032, 0x12345644, 0x00000005, 0x00000098, 0x000000AB, 0x000000CD, 0x00000055, 0x00000032, 0x000000CA, 0x00000045 END ; End of the assembly program