

ii

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal – 576 104

DEPARTMENT OF INFORMATION & COMMUNICATION

TECHNOLOGY

Certificate

This is to certify that Ms./Mr. …………………...……………………………………

Reg. No. …..…………………… Section: ……………… Roll No: ………………... has

satisfactorily completed the lab exercises prescribed for Database Systems Lab [ICT 2241]

of Second Year B. Tech. (IT) Degree at MIT, Manipal, in the academic year 2024-2025

Date: ……...................................

 Signature of the faculty

iii

CONTENTS

Lab

No.

Title
Page

No.

Marks

Remarks

Sign

 Course Objectives, Outcomes and

Evaluation Plan

i

Instructions to the Students

ii

Introduction to vc# and SQL plus

iv

1

Basics of vc# programs – i

1

2

Basics of vc# programs –ii

14

3 Data definition and manipulation

language

23

4

Basic operations of SQL queries

39

5

Nested subqueries

63

6

Procedural language

76

7

Procedural language

91

8

Data access from vc#

97

9

Project User Interface and

Relational database design

108

10 Database implementation and data

population
116

11

Project Implementation

121

12

Project Evaluation

126

References

130

iv

i

DBS LAB MANUAL COURSE OBJECTIVES/OUTCOMES/EVALUATION PLAN

Course Objectives

• To understand database creation and explore the database query language

• Learn to develop stored procedures, functions and packages

• To develop an application software with host language interface

Course Outcomes

 The student should be able to:

• Formulate queries for design and manipulation of database tables

• Apply stored procedures and functions on data

• Apply connectivity tools to connect backend data to interface

• Design and develop applications to solve real world problems

Evaluation plan

Split up of 60 marks for Regular Lab Evaluation

Evaluation 1: 13M

Mid term : 20 M

Evaluation 2: 8M

Project Synopsis:5M

ER Diagram: 6M

Project Progress: 8M

End Semester Lab evaluation: 40 marks (Duration 2 hrs)

SQL and PL/SQL Execution: 20 Marks

Project Demo: 20 Marks

Total: 20+20 =40 Marks

DBS LAB MANUAL INSTRUCTIONS TO STUDENTS

ii

INSTRUCTIONS TO THE STUDENTS

Pre- Lab Session Instructions

1. Students should carry the Lab Manual Book and the required stationary to every lab

session

2. Be on time and follow the institution dress code

3. Must Sign in the log register provided

4. Make sure to occupy the allotted seat and answer the attendance

5. Adhere to the rules and maintain the decorum

In- Lab Session Instructions

• Follow the instructions on the allotted exercises

• Show the program and results to the instructors on completion of experiments

• On receiving approval from the instructor, copy the program and results in the Lab

record

• Prescribed textbooks and class notes can be kept ready for reference if required

General Instructions for the exercises in Lab

• Implement the given exercise individually and not in a group.

• The programs should meet the following criteria:

o Programs should be interactive with appropriate prompt messages, error

messages if any, and descriptive messages for outputs.

o Programs should perform input validation (Data type, range error, etc.) and

give appropriate error messages and suggest corrective actions.

o Comments should be used to give the statement of the problem and every

function should indicate the purpose of the function, inputs and outputs.

o Statements within the program should be properly indented.

o Use meaningful names for variables and functions.

o Make use of constants and type definitions wherever needed.

• Plagiarism (copying from others) is strictly prohibited and would invite severe

penalty in evaluation.

DBS LAB MANUAL INSTRUCTIONS TO STUDENTS

iii

• The exercises for each week are divided under three sets:

o Solved exercise

o Lab exercises - to be completed during lab hours

o Additional Exercises - to be completed outside the lab or in the lab to enhance

the skill

• In case a student misses a lab class, he/she must ensure that the experiment is

completed during the repetition class with the permission of the faculty concerned

but credit will be given only to one day’s experiment(s).

• Students missing out lab on genuine reasons like conference, sport or activities

assigned by the department or institute will have to take prior permission from the

HOD to attend additional lab(in other batch) and complete it before the student

goes on leave. The student could be awarded marks for the write up for that day

provided he submits it during the immediate next lab.

• Students who fall sick should get permission from the HOD for evaluating the lab

records. However, the attendance will not be given for that lab.

• Students will be evaluated only by the faculty with whom they are registered even

though they carry out additional experiment in other batch.

• Presence of the student during the lab end semester exams is mandatory even if the

student assumes he has scored enough to pass the examination

• Minimum attendance of 75% is mandatory to write the final exam.

• If the student loses his book, he/she will have to rewrite all the lab details in the lab

record.

• Questions for lab tests and examination are not necessarily limited to the questions

in the manual, but may involve some variations and/or combinations of the

questions.

• A sample note preparation is given as a model for observation.

THE STUDENTS SHOULD NOT

• Bring mobile phones or any other electronic gadgets to the lab.

• Go out of the lab without permission.

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

iv

INTRODUCTION TO VC# AND SQL PLUS EDITOR

The Visual Studio product family shares a single integrated development environment

(IDE) that is composed of several elements: the Menu bar, Standard toolbar, various

tool windows docked or auto-hidden on the left, bottom, and right sides, as well as the

editor space. The tool windows, menus, and toolbars available depend on the type of

project or file you are working in. Depending on the settings you have applied, and any

subsequent customizations you have made, the placement of tool windows and other

elements in the IDE differs. You can change settings by using the Import and Export

Settings Wizard. By selecting the Reset all settings option, you can change your default

programming language.

You use the Solution Explorer to manage solution or project items and browse through

your code. To display the Solution Explorer choose View Solution Explorer, press

CTRL + ALT L, or type Solution Explorer in the Quick Launch window. The Solution

Explorer helps you to do the following:

• Add projects to a solution

• Add items to a project

• Copy or move items and projects

• Rename solutions, projects, and items

• Delete, remove, or unload projects

Some Solution Explorer commands work differently in different project types. For

example, the Delete command deletes a file permanently in a Visual C# project, but in a

Visual C++ project it removes the link between the file and the project, without deleting

the physical file.

The Toolbox displays icons for controls and other items that you can add to Visual

Studio projects. To open the Toolbox, click Toolbox on the View menu. You can dock

the Toolbox, and you can pin it open or set it to Auto Hide. Every Toolbox icon can be

dragged to a design view or pasted in a code editor in the Visual Studio integrated

development environment (IDE). Either action adds the fundamental code to create an

instance of the Toolbox item in the active project file.

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

v

The Toolbox only displays items appropriate to the type of file you are working in. You

can search within the Toolbox to further filter the items that appear. If your project

requires a control that is not supported by the Client Profile, you can set your project to

target the entire framework by editing the project properties.

Use the Properties window to view and change the design-time properties and events

of selected objects that are located in editors and designers. You can also use the

Properties window to edit and view file, project, and solution properties. You can find

Properties Window on the View menu. You can also open it by pressing F4 or by typing

Properties in the Quick Launch window.

The Properties window displays different types of editing fields, depending on the needs

of a particular property. These edit fields include edit boxes, drop-down lists, and links

to custom editor dialog boxes. Properties shown in grey are read-only.

SQL Plus is the primary interface to the Oracle Database server, provides a powerful

yet easy-to-use environment for querying, defining, and controlling data. SQL Plus

delivers a full implementation of Oracle SQL and PL/SQL, along with a rich set of

extensions. The exceptional scalability of the Oracle Database, coupled with the object-

relational technology of SQL Plus, allows you to develop your complex data types and

objects using Oracle's integrated systems solution.

SQL Plus is a command prompt editor which is used to work on the database queries.

To do so, you need to open the command prompt which looks like the usual command

prompt. Give a command connect and press enter which then will ask for the username

and password. Once you enter the username and password, you can work on the

database queries.

SQL Plus understands five categories of text:

1. SQL statements

2. PL/SQL blocks

3. SQL*Plus internal commands, for example:

o environment control commands such as SET

o environment monitoring commands such as SHOW

4. Comments

5. External commands prefixed by the ‘!’ char

Scripts can include all these components.

DBS LAB MANUAL INTRODUCTION TO VC# AND SQL PLUS EDITOR

vi

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

1

LAB NO.: 1 Date:

Objectives:

BASIC VC# PROGRAMS - I

• To use different tools using visual studio and code them in C#.

Introduction:

Description of the tools used:

Text Box: A Text Box control is used to display, or accept as input, a single line of text.

This control has additional functionality that is not found in the standard Windows text

box control, including multiline editing and password character masking. A text box

object is used to display text on a form or to get user input while a C# program is

running. In a text box, a user can type data or paste it into the control from the

clipboard. For displaying a text in a Text Box control, you can code like this

textBox1.Text = “Hello Manipal!”;

You can also collect the input value from a Text Box control to a variable like this way

string var;

var = textBox1.Text;

Label: Labels are one of the most frequently used C# control. We can use the Label

control to display text in a set location on the page. Label controls can also be used to

add descriptive text to a Form to provide the user with helpful information. The Label

class is defined in the System. Windows.Forms namespace.

Add a Label control to the form - Click Label in the Toolbox and drag it over the forms

Designer and drop it in the desired location. If you want to change the display text of

the Label, you have to set a new text to the Text property of Label.

label1.Text = "This is my first Label";

In addition to displaying text, the Label control can also display an image using the

Image property, or a combination of the Image Index and Image List properties.

label1.Image = Image.FromFile("C:\\testimage.jpg");

Button: A button is a control, which is an interactive component that enables users to

communicate with an application. The Button class inherits directly from the Button

Base class. A Button can be clicked by using the mouse, ENTER key, or SPACEBAR if

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

2

the button has focus. When you want to change display text of the Button, you can

change the Text property of the button.

button1.Text = "Click Here";

Similarly if you want to load an Image to a Button control, you can code like this

button1.Image = Image.FromFile("C:\\testimage.jpg");

Radio Button: A radio button or option button enables the user to select a single option

from a group of choices when paired with other Radio Button controls. When a user

clicks on a radio button, it becomes checked, and all other radio buttons with same

group become unchecked. The Radio Button control can display text, an image, or both.

Use the Checked property to get or set the state of a Radio Button.

radioButton1.Checked = true;
The radio button and the check box are used for different functions. Use a radio button

when you want the user to choose only one option. When you want the user to choose

all appropriate options, use a check box. Like check boxes, radio buttons support a

Checked property that indicates whether the radio button is selected.

Check Box: Check Boxes allow the user to make multiple selections from a number of

options. Check Box is used, to give the user, an option, such as true/false or yes/no. You

can click a check box to select it and click it again to deselect it. The Check Box control

can display an image or text or both. Usually Check Box comes with a caption, which

you can set in the Text property.

checkBox1.Text = "Net-informations.com";

You can use the Check Box control Three State property to direct the control to return

the Checked, Unchecked, and Indeterminate values. You need to set the check box’s

Three State property to True to indicate that you want it to support three states.

checkBox1.ThreeState = true;

The radio button and the check box are used for different functions. Use a radio button

when you want the user to choose only one option. When you want the user to choose

all appropriate options, use a check box.

List Box: The List Box control enables you to display a list of items to the user that the

user can select by clicking. In addition to display and selection functionality, the List

Box also provides features that enable you to efficiently add items to the List Box and

to find text within the items of the list. You can use the Add or Insert method to add

items to a list box. The Add method adds new items at the end of an unsorted list box.

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

3

listBox1.Items.Add("Sunday");

If you want to retrieve a single selected item to a variable, you can code like this:

string var; var = listBox1.Text;

The Selection Mode property determines how many items in the list can be selected at a

time. A List Box control can provide single or multiple selections using the Selection

Mode property. If you change the selection mode property to multiple select, then you

will retrieve a collection of items from ListBox1.SelectedItems property.

listBox1.SelectionMode = SelectionMode.MultiSimple;

Combo Box: A Combo Box displays a text box combined with a List Box, which

enables the user to select items from the list or enter a new value. The user can type a

value in the text field or click the button to display a drop down list. You can add

individual objects with the Add method. You can delete items with the Remove method

or clear the entire list with the Clear method.

To add the items into the drop down list:

comboBox1.Items.Add("Sunday");

comboBox1.Items.Add("Monday");

comboBox1.Items.Add("Tuesday");

Picture Box: The Windows Forms Picture Box control is used to display images in

bitmap, GIF, icon, or JPEG formats. You can set the Image property to the Image you

want to display, either at design time or at run time. You can programmatically change

the image displayed in a picture box, which is particularly useful when you use a single

form to display different pieces of information.

pictureBox1.Image = Image.FromFile("c:\\testImage.jpg");

The Size Mode property, which is set to values in the Picture Box Size Mode

enumeration, controls the clipping and positioning of the image in the display area.

pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;

There are five different Picture Box Size Mode available under Picture Box control.

Auto Size - Sizes the picture box to the image.

Center Image - Centers the image in the picture box.

Normal - Places the upper-left corner of the image at upper left in the picture box.

Stretch Image - Allows you to stretch the image in code.

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

4

The Picture Box is not a selectable control, which means that it cannot receive input

focus. The following C# program shows how to load a picture from a file and display it

in stretch mode.

Progress Bar: A progress bar is a control that an application can use to indicate the

progress of a lengthy operation such as calculating a complex result, downloading a

large file from the web etc. Progress Bar controls are used whenever an operation takes

more than a short period of time. The Maximum and Minimum properties define the

range of values to represent the progress of a task.

Minimum : Sets the lower value for the range of valid values for progress.

Maximum : Sets the upper value for the range of valid values for progress.

Value : This property obtains or sets the current level of progress.

By default, Minimum and Maximum are set to 0 and 100. As the task proceeds, the

Progress Bar fills in from the left to the right to delay the program briefly so that you

can view changes in the progress bar clearly.

C# DateTimePicker Control: The Date Time Picker control allows you to display and

collect date and time from the user with a specified format. The Date Time Picker

control has two parts, a label that displays the selected date and a popup calendar that

allows users to select a new date. The most important property of the Date Time Picker

is the Value property, which holds the selected date and time.

dateTimePicker1.Value = DateTime.Today;

The Value property contains the current date and time the control is set to. You can use

the Text property or the appropriate member of Value to get the date and time value.

DateTime iDate;

iDate = dateTimePicker1.Value;

The control can display one of several styles, depending on its property values. The

values can be displayed in four formats, which are set by the Format property: Long,

Short, Time, or Custom.

dateTimePicker1.Format = DateTimePickerFormat.Short;

Message Box: Displays a message window, also known as a dialog box, which presents

a message to the user. It is a modal window, blocking other actions in the application

until the user closes it. A Message Box can contain text, buttons, and symbols that

inform and instruct the user.

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

5

Tree view: The Tree View control contains a hierarchy of Tree View Item controls. It

provides a way to display information in a hierarchical structure by using collapsible

nodes. The top level in a tree view are root nodes that can be expanded or collapsed if

the nodes have child nodes. You can explicitly define the Tree View content or a data

source can provide the content. The user can expand the Tree Node by clicking the plus

sign (+) button, if one is displayed next to the Tree Node, or you can expand the Tree

Node by calling the TreeNode. Expand method. You can also navigate through tree

views with various properties: First Node, Last Node, Next Node, Prev Node, Next

Visible Node, Prev Visible Node.

The full path method of tree view control provides the path from root node to the

selected node.

treeView1.SelectedNode.FullPath.ToString();

Tree nodes can optionally display check boxes. To display the check boxes, set the

Check Boxes property of the Tree View to true.

treeView1.CheckBoxes = true;

Example: Design a simple calculator using C#.

Open Visual studio. Click on File->New->Project. Select windows form Application.

Change the name of the project in the Name field below and choose the path where

the project has to be stored. Then Click on OK which will redirect to the form with a

name Form1 which acts as a panel where the user interface will be created. To do so,

Tool Box is required which is displayed to the left side. (If it is not visible then go to

View->ToolBox.)

From the ToolBox select Button control and drop it in the Form. Then in the

Properties window (which is on the bottom right) go to Text field and change value-

textBox1 currently - to 1. Text field in the properties window depicts the display name

for the tool control.

Change the Name field of the button in the properties window to cmd1. This name is

the name taken into the code. Similarly drag and drop the buttons for the rest of the

numbers and the operators. Rename the text field and the Name field of the respective

buttons according to the requirements. Now, drag and drop the text field from the tool

box. Now we need to code the buttons so that we can make it usable. For that we will

require few variable which are to be declared as given below:

public partial class Form1 : Form

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

6

{

string input = string.Empty; //to read the input when clicked

string Op1 = string.Empty; //First operand

string Op2 = string.Empty; //Second operand

char Operator; //Operator

double res = 0.0; //Final result

public Form1()

{

InitializeComponent();

}

Double click on button1 which will redirect you to Form1.cs from Form1.cs[Design].

As you can see it has created a function with name cmd1_Click (cmd1 is the name

which you had given in the name field of the properties window). The default event

ofthe button is Click, that is why the word Click is attached withcmd1, which means

”On the event Click on the button” the executable statements under cmd1_Click

function should be executed. Type the following code under the created function

private void cmd1_Click(object sender, Event Args e)

{

this.textBox1.Text = string.Empty;

input = input + "1";

this.textBox1.Text += input;

}

Similarly, code for button 2 to button 9 by changing the values of input variable

asshown in the code below:

private void cmd2_Click(object sender, EventArgs e)

{

this.textBox1.Text = string.Empty;

input += "2";

this.textBox1.Text += input;

}

Now it is time to code the operators. Similar to the previous step, double click on the

operator button, maybe’+’, which will be redirected to the function in Form1.cs. Type

the following code under it.

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

7

private void add_Click(object sender, EventArgs e)

{

Op1 = input;

Operator = ’+’;

input = string.Empty;

}

When the operator button is clicked, it means that until then whatever the numbers are

being pressed should be considered as the first operand. That’s why the

statement,Op1=input. And then input variable is cleared so that it starts reading the

second operand. Similarly code for the rest of the operators.

Once the numbers and operators are coded, we need result. Double click on the equal to

button and type the following code.

private void Ans_Click_Click(object sender, EventArgs e)

{

Op2 = input;

double num1, num2;

double.TryParse(Op1, out num1);

double.TryParse(Op2, out num2);

if (Operator == ’+’)

{

res = num1 + num2;

this.textBox1.Text = res.ToString();

}

else if (Operator == ’-’)

{

res = num1 - num2;

textBox1.Text = res.ToString();

}

else if (Operator == ’*’)

{

res = num1 * num2;

textBox1.Text = res.ToString();

}

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

8

else if (Operator == ’/’)

{

if (num2 != 0)

{

res = num1 / num2;

textBox1.Text = res.ToString();

}

else

{

textBox1.Text = "DIV/Zero!";

}

}

input = string.Empty;

}

Lab exercises:

1. Design a scientific calculator using C#. Have atleast 4 different kinds of scientific

functions.

2. Develop a simple form to enter necessary details for online registration of students.

Also, display the message (confirm or not) along with details entered on submit.

Perform necessary validation. Use Text Box, Radio button, Combo box, Check box,

Calendar, Label, Button, and Message Box.

[OBSERVATION SPACE – LAB1]

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

[OBSERVATION SPACE – LAB1]

9

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

[OBSERVATION SPACE – LAB1]

10

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

[OBSERVATION SPACE – LAB1]

11

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

[OBSERVATION SPACE – LAB1]

12

DBS LAB MANUAL LAB NO. 1: BASIC VC# PROGRAMS - I

[OBSERVATION SPACE – LAB1]

13

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

14

LAB NO.: 2 Date:

BASIC VC# PROGRAMS - II

Objectives:

• To learn the usage of MenuBar, rich text box and few other components of C#.

Introduction:

To create a notepad application, the primary requirements are to place a MenuBar

control and a textbox control. A menubar is a collection of menus and a menu is a

collection of menu items.

To create a simple notepad application, create a new project with a name NotepadApp.

According to your requirement, you can add the submenus in a menu by typing the

menu name and the sub menu name in the box which appears right below the main

menu tab name you have given.

Under File menu: New, Open, Save, Print, Exit.

Under Edit menu: Cut, Copy, Paste, SelectAll.

Under Format menu: Font, Color.

Under Help menu: AboutUs.

Set the textbox property as: Name = txtContent, Dock = Fill and Multiline = true.

To work with the above application, 6 controls are required that is

• OpenFileDialog control : This control is used here to print an open dialog box.

• SaveFileDialog control : This control is used here to print a file dialog box.

• PrintDialog control : This control is used here to print a print dialog box.

• FontDialog control : This control is used here to print a font dialog box.

• ColorDialog control : This control is used here to print a color dialog box.

• MenuStrip control : This is used here to add different menu items.

So to add the above controls, Go to the tool box and add accordingly the controls as

mentioned.

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

15

Rich Textbox: Rich Textbox is an advanced textbox control with very interactive

features and large number of properties. It supports the RTF (Rich Text Format) format.

Rich textbox have some advance properties and it is in multiline mode by default. To

use the Rich Textbox in the project the assembly required to refer is Presentation

Framework (in PresentationFramework.dll) and the namespace is

System.Windows.Control. Below is some of its properties that can be used in the

project:

• Context menu strip: By this property we can get or set the context menu element

that should appear whenever the context menu is requested by the user. Context

Menu strip is explained later.

• Cursor: Get and set the cursor that displays when the mouse pointer is over this

element. In this project we set its value as IBeam. Other than IBeam there are many

options like arrow, cross, default etc.

• Dock: This property automatically resizes the control when the size of the parent

container is changed.

• Tooltip: Get or set the tool tip object that is displayed for this element in the user

interface (UI).

Menu Strip: The next control is menu strip that should be used in the project. The

menu strip adds the menu bar in Windows form and then add default menus and create

custom menus directly in visual studio. The assembly required for this control is

System.Windows.Form. We can add menu strip directly by drag and drop or at run

time.

Adding the items under the submenu can also be done by selecting the menu strip. In

the top right corner a black triangle symbol can be seen. Click on the triangle. Select

Edit items option. In the dialog box which is open now, click on Add button which will

add a new Tool Strip Menu Item. On the right of the pane, you can see the property

window of the new tool strip which you have just created. Change the Text of the strip

and the Name field of the strip. The name field depicts the displayed name in the menu.

To make the notepad work, you need to code the respective functionalities. To open a

file, drag and drop the open file dialog component from the tool set which creates the

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

16

object for the same. It can be seen in the pane Form1. Now to make the open control

work, write the following code under the open sub menu option. Before adding the

below code include the namespace using System.IO;

private void openToolStripMenuItem_Click(object sender, EventArgs e)

{

OpenFileDialog dlg = new OpenFileDialog();

dlg.Title = "Open";

dlg.ShowDialog();

string fName = dlg.FileName;

StreamReader sr = new StreamReader(fName);

richTextBox1.Text = sr.ReadToEnd();

sr.Close();

}

To save a file:

private void saveToolStripMenuItem_Click(object sender, EventArgs e)

{

saveFileDialog1.ShowDialog();

string fName = saveFileDialog1.FileName;

StreamWriter sw = new StreamWriter(fName);

sw.Write(richTextBox1.Text);

sw.Flush();

sw.Close();

}

private void fontToolStripMenuItem_Click(object sender, EventArgs e)

{

FontDialog fd = new FontDialog();

fd.Font = richTextBox1.SelectionFont;

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

17

fd.Color = richTextBox1.SelectionColor;

if (fd.ShowDialog() == DialogResult.OK)

{

richTextBox1.SelectionFont = fd.Font;

richTextBox1.SelectionColor = fd.Color;

}

}

Displaying One Form from Another:

To add a new form to the project, from the menu select Project -> Add New Item ->

Windows Forms (under visual c#) - >Windows Form, click on Add after giving a

suitable name.

Following example displays a form namely Form2 from Form1. This example

requires two forms named Form1 and Form2. Form1 contains a Button control named

button1. Set button1's Click event handler to button1_Click.

private void button1_Click(object sender, System.EventArgs e)

{

Form2 frm = new Form2();

frm.Show();

}

Lab exercises:

1. Develop a notepad application using Rich Text Box, Menu Strip, File Dialogue,

Color Dialog, Font Dialog components.

2. Develop a user interface for a banking application. A customer should be able to

login with his/her credentials. Also, customer should be able to change his/her

password. The second form should display the customer’s user name, balance, last

access, date and last 5 transactions. The third form should facilitate money transfer

by adding beneficiary. The amount transferred and the current balance in the

account should be displayed as a message.

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

[OBSERVATION SPACE – LAB2]

18

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

[OBSERVATION SPACE – LAB2]

19

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

[OBSERVATION SPACE – LAB2]

20

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

[OBSERVATION SPACE – LAB2]

21

DBS LAB MANUAL LAB NO. 2: BASIC VC# PROGRAMS - II

[OBSERVATION SPACE – LAB2]

22

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

23

LAB NO.: 3 Date:

DATA DEFINITION AND MANIPULATION LANGUAGE

Objectives:

• To learn Data Definition Language and Data Manipulation Language

Introduction:

IBM developed the original version of SQL, called Sequel, as part of the System R

project in the early 1970s. The Sequel language has evolved since then, and its name

has changed to SQL (Structured Query Language). Many products now support the

SQL language. SQL has clearly established itself as the standard relational database

language. In 1986, the American National Standards Institute (ANSI) and the

International Organization for Standardization (ISO) published an SQL standard, called

SQL-86. ANSI published an extended standard for SQL, SQL-89, in 1989. The next

version of the standard was SQL-92 standard, followed by SQL:1999, SQL:2003,

SQL:2006, and most recently SQL:2008.

The SQL language has several parts:

• Data-definition language (DDL). The SQL DDL provides commands for defining

relation schemas, deleting relations, and modifying relation schemas.

• Data-manipulation language (DML). The SQL DML provides the ability to query

information from the database and to insert tuples into, delete tuples from, and

modify tuples in the database.

• Integrity. The SQL DDL includes commands for specifying integrity constraints

that must be satisfied by the data stored in the database. Updates that violate

integrity constraints are disallowed.

• View definition. The SQL DDL includes commands for defining views.

• Transaction control. SQL includes commands for specifying the beginning and

ending of transactions.

• Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how

SQL statements can be embedded within general-purpose programming languages,

such as C, C++, and Java.

• Authorization. The SQL DDL includes commands for specifying access rights to

relations and views.

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

24

SQL Data Definition: The set of relations in a database must be specified to the system

by means of a data- definition language (DDL). The SQL DDL allows specification of

not only a set of relations, but also information about each relation, including:

• The schema for each relation.

• The types of values associated with each attribute.

• The integrity constraints.

• The set of indices to be maintained for each relation.

• The security and authorization information for each relation.

• The physical storage structure of each relation on disk.

Basic Types

The SQL standard supports a variety of built-in types, including:

• char(n): A fixed-length character string with user-specified length n. The full form,

character, can be used instead.

• varchar(n): A variable-length character string with user-specified maximum length

n. The full form, character varying, is equivalent.

• int: An integer (a finite subset of the integers that is machine dependent). The full

form, integer, is equivalent.

• smallint: A small integer (a machine-dependent subset of the integer type).

• numeric(p, d): A fixed-point number with user-specified precision. The number

consists of p digits (plus a sign), and d of the p digits are to the right of the decimal

point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 or

0.32 can be stored exactly in a field of this type.

• real, double precision: Floating-point and double-precision floating-point numbers

with machine-dependent precision.

• float(n): A floating-point number, with precision of at least n digits.

Each type may include a special value called the null value. A null value indicates an

absent value that may exist but be unknown or that may not exist at all. In certain cases,

we may wish to prohibit null values from being entered.

Basic Schema Definition

We define an SQL relation by using the create table command. The following

command creates a relation department in the database.

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

25

create table department (

deptname varchar (20),

building varchar (15),

budget numeric (12,2),

primary key (deptname));

The relation created above has three attributes, deptname, which is a character string of

maximum length 20, building, which is a character string of maximum length 15, and

budget, which is a number with 12 digits in total, 2 of which are after the decimal point.

The create table command also specifies that the deptname attribute is the primary key

of the department relation. The general form of the create table command is:

create table r

(A1D1,

A2D2,

. . . ,

An Dn,

_integrity-constraint1

_,

. . . ,

_integrity-constraintk

_);

where r is the name of the relation, each Ai is the name of an attribute in the schema of

relation r, and Di is the domain of attribute Ai; that is, Di specifies the type of attribute Ai

along with optional constraints that restrict the set of allowed values for Ai. The

semicolon shown at the end of the create table statements, as well as at the end of other

SQL statements later in this chapter, is optional in many SQL implementations. SQL

supports a number of different integrity constraints. In this section, we discuss only a

few of them:

• primary key (Aj1, Aj2, . . . , Ajm): The primary-key specification says that attributes

Aj1, Aj2, . . . , Ajm form the primary key for the relation. The primary key attributes

are required to be non-null and unique; that is, no tuple can have a null value for a

primary-key attribute, and no two tuples in the relation can be equal on all the

primary-key attributes.

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

26

• foreign key (Ak1, Ak2, . . . , Akn) references s: The foreign key specification says

that the values of attributes (Ak1, Ak2, . . . , Akn) for any tuple in the relation must

correspond to values of the primary key attributes of some tuple in relation s.

• not null: The not null constraint on an attribute specifies that the null value is not

allowed for that attribute; in other words, the constraint excludes the null value

from the domain of that attribute. The not null constraint on the name attribute of

the instructor relation ensures that the name of an instructor cannot be null. Kindly

refer page no. 39 for instructor schema.

• Unique Constraint: The unique (Aj1 , Aj2, . . . , Ajm) says that attributes Aj1 ,

Aj2, . . . , Ajm form a candidate key; that is, no two tuples in the relation can be

equal on all the listed attributes. However, candidate key attributes are permitted to

be null unless they have explicitly been declared to be not null.

• The check Clause: The clause check(P) specifies a predicate P that must be

satisfied by every tuple in a relation. A common use of the check clause is to

ensure that attribute values satisfy specified conditions, in effect creating a

powerful type system. For instance, a clause check (budget > 0) in the create table

command for relation department would ensure that the value of budget is

nonnegative. For example,

create table department (

deptname varchar (20),

building varchar (15),

budget numeric (12,2),

primary key (deptname),

check (budget > 0));

SQL prevents any update to the database that violates an integrity constraint. For

example, if a newly inserted or modified tuple in a relation has null values for any

primary-key attribute, or if the tuple has the same value on the primary-key attributes as

does another tuple in the relation, SQL flags an error and prevents the update. Similarly,

an insertion of a course tuple with a deptname value that does not appear in the

department relation would violate the foreign-key constraint on course, and SQL

prevents such an insertion from taking place. A newly created relation is empty initially.

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

27

Insertion:

We can use the insert command to load data into the relation. For example, if we wish

to insert the fact that there is an instructor named Smith in the Biology department with

instructor_id 10211and a salary of $66,000, we write:

insert into instructor values (10211, ’Smith’, ’Biology’, 66000);

The values are specified in the order in which the corresponding attributes are listed in

the relation schema.

To insert data into a relation, we either specify a tuple to be inserted or write a query

whose result is a set of tuples to be inserted. Obviously, the attribute values for inserted

tuples must be members of the corresponding attribute’s domain. Similarly, tuples

inserted must have the correct number of attributes. The simplest insert statement is a

request to insert one tuple. Consider course relation schema as course (course_id, title,

deptname, credits) and suppose that we wish to insert the fact that there is a course CS-

437 in the Computer Science department with title “Database Systems”, and 4 credit

hours. We write:

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

In this example, the values are specified in the order in which the corresponding

attributes are listed in the relation schema. For the benefit of users who may not

remember the order of the attributes, SQL allows the attributes to be specified as part of

the insert statement. For example, the following SQL insert statements are identical in

function to the preceding one:

insert into course (course id, title, deptname, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

More generally, we might want to insert tuples on the basis of the result of a query.

Suppose that we want to make each student (kindly refer page no. 55 for the student

schema) in the Music department who has earned more than 144 credit hours, an

instructor in the Music department, with a salary of

$18,000. We write:

insert into instructor

select ID, name, deptname, 18000

from student

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

28

where deptname = ’Music’ and tot cred >144;

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

29

SQL evaluates the select statement first, giving a set of tuples that is then inserted into

the instructor relation. Each tuple has an ID, a name, a deptname (Music), and a salary

of $18,000.

Deletion

A delete request is expressed in much the same way as a query. We can delete only

whole tuples; we cannot delete values on only particular attributes. SQL expresses a

deletion by

delete from r

The delete statement first finds all tuples t in r for which P(t) is true, and then deletes

them from r. The where clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete tuples

from several relations, we must use one delete command for each relation. The

predicate in the where clause may be as complex as a select command’s where clause.

Here are examples of SQL delete requests:

• Delete all tuples in the instructor relation pertaining to instructors in the Finance

department.

delete from instructor

where deptname= ’Finance’;

• Delete all instructors with a salary between $13,000 and $15,000.

delete from instructor

where salary between 13000 and 15000;

• Delete all tuples in the instructor relation for those instructors associated with a

department located in the Watson building.

delete from instructor

where deptname in (select deptname

from department

where building = ’Watson’);

This delete request first finds all departments located in Watson, and then deletes all

instructor tuples pertaining to those departments.

Updates

In certain situations, we may wish to change a value in a tuple without changing all

values in the tuple. For this purpose, the update statement can be used. As we could for

insert and delete, we can choose the tuples to be updated by using a query. Suppose

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

30

that annual salary increases are being made, and salaries of all instructors are to be

increased by 5percent.We write:

update instructor

set salary= salary * 1.05;

The preceding update statement is applied once to each of the tuples in instructor

relation. If a salary increase is to be paid only to instructors with salary of less than

$70,000, we can write:

update instructor

set salary = salary * 1.05

where salary <70000;

In general, the where clause of the update statement may contain any construct legal in

the where clause of the select statement (including nested selects). As with insert and

delete, a nested select within an update statement may reference the relation that is

being updated. As before, SQL first tests all tuples in the relation to see whether they

should be updated, and carries out the updates afterward.

For example, we can write the request “Give a 5 percent salary raise to instructors

whose salary is less than average” as follows:

update instructor

set salary = salary * 1.05

where salary <(select avg (salary)

from instructor);

Let us now suppose that all instructors with salary over $100,000 receive a3 percent

raise, whereas all others receive a 5 percent raise. We could write two update

statements:

update instructor

set salary = salary * 1.03

where salary >100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

Note that the order of the two update statements is important. If we changed the order

of the two statements, an instructor with a salary just under $100,000 would receive an

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

31

over8 percent raise. SQL provides a case construct that we can use to perform both the

updates with a single update statement, avoiding the problem with the order of updates.

update instructor

set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

The general form of the case statement is as follows.

case

when pred1then result1

when pred2then result2

. . .

when prednthen resultn

else result0

end

The operation returns resulti, where i is the first of pred1, pred2, . . . , predn that is

satisfied; if none of the predicates is satisfied, the operation returns result0. Case

statements can be used in any place where a value is expected.

To remove a relation from an SQL database, we use the drop table command. The

drop table command deletes all information about the dropped relation from the

database.

drop table r;

We use the alter table command to add attributes to an existing relation. All tuples in

the relation are assigned null as the value for the new attribute. The form of the

altertable command is

alter table r add A D;

where r is the name of an existing relation, A is the name of the attribute to be added,

and D is the type of the added attribute. We can drop attributes from a relation by

the command

alter table r drop column A;

where r is the name of an existing relation, and A is the name of an attribute of

the relation. Many database systems do not support dropping of attributes, although they

will allow an entire table to be dropped.

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

32

Lab Exercises:

1. Consider the insurance database given below:

PERSON (driver_id#: varchar(30), name: varchar(50),

address:varchar(100)

CAR (regno: varchar(20), model: varchar(30), Year:int)

ACCIDENT (report_number: int, accd_date: date, location:

varchar(50))

OWNS (driver_id#: varchar(30), regno: varchar(20))

PARTICIPATED (driver_id#: varchar(30), regno: varchar(20), report_number:

 int, damage_amount: int)

i. Create the above tables by properly specifying the primary keys and the foreign

keys.

ii. Enter at least five tuples for each relation.

(Hint: Date format is ‘yyyy-mm-dd’)

iii. Update the damage amount to 25000 for the car with a specific reg. no in a

PARTICIPATED table with report number 12.

iv. Delete the accident and related information that took place in a specific year.

(Hint: Command to extract year component from the date attribute is,

extract (year from accd_date))

v. Alter table to add and delete an attribute.

vi. Alter table to add Check constraint.

Additional Exercises:

Consider the following relations for an order processing database application in a

company.

CUSTOMER (cust#: int, cname: varchar(50), city:

varchar(30))

ORDERS (order#:int, odate: date, cust#: int, ordamt: int)

ITEM (item#: int, unitprice: int)

ORDER_ITEMS (order#:int, qty:int, item#:int)

SHIPMENT (order#: int, warehouse#: int, shipdate: date)

WAREHOUSE (warehouse#:int, city: varchar(30))

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

33

i. Create the above tables by properly specifying the primary keys and the foreign

keys.

ii. Enter at least five tuples for each relation.

iii. Execute following queries on the database:

a. Produce a listing: CUSTNAME, No. of Orders, AVG_ORDER_AMT,

where the middle column is the total number of orders by the customer and

the last column is the average order amount for that customer.

b. List the order no for the orders that were shipped from all the warehouses

that the company has in a specific city.

c. Decrease the order_amount by 10% if ordered quantity is greater than ten

or else by 5% using Case construct.

[OBSERVATION SPACE – LAB 3]

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

[OBSERVATION SPACE – LAB 3]

34

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

[OBSERVATION SPACE – LAB 3]

35

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

[OBSERVATION SPACE – LAB 3]

36

DBS LAB MANUAL LAB NO. 3: DATA DEFINITION AND MANIPULATION LANGUAGE

[OBSERVATION SPACE – LAB 3]

37

DBS LAB MANUAL LAB NO.3: DATA DEFINITION AND MANUPULATION LANGUAGE

[OBSERVATION SPACE – LAB 3]

38

DBS LAB MANUAL LAB NO.3: DATA DEFINITION AND MANUPULATION LANGUAGE

[OBSERVATION SPACE – LAB 3]

39

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

40

LABNO.: 4 Date:

BASIC OPERATIONS OF SQL QUERIES

Objectives:

• To work on basic operations of SQL queries

Introduction:

The basic structure of an SQL query consists of three clauses: select, from, and where.

The query takes as its input the relations listed in the from clause, operates on them as

specified in the where and select clauses, and then produces a relation as the result.

Queries on a Single Relation

Let us consider a simple query using Department table created in Lab-3, “Find the

names of all departments.” Department names are found in the department relation, so

we put that relation in the from clause. The department name appears in the name

attribute, so we put that in the select clause.

select deptname

from department;

The result is a relation consisting of a single attribute with the heading deptname.

Now consider Instructor table, as follows:

create table instructor(

ID varchar (5),

name varchar (20) not null,

deptname varchar (20),

salary numeric (8,2),

primary key (ID),

foreign key (deptname) references department);

The where clause allows us to select only those rows in the result relation of the from

clause that satisfy a specified predicate. Consider the query “Find the names of all

instructors in the Computer Science department who have salary greater than $70,000.”

This query can be written in SQL as:

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

41

select name

from instructor

where deptname = ’Comp. Sci.’ and salary >70000;

Figure 4.1: the instructor relation

If the instructor relation is as shown in Figure 4.1, then the relation that results from the

preceding query is shown in Figure 4.2.

Figure 4.2: Result of “Find the names of all instructors in the Computer Science

department who have salary greater than $70,000.”

SQL allows the use of the logical connectives and, or, and not in the where clause. The

operands of the logical connectives can be expressions involving the comparison

operators <, <=, >, >=, =, and <>. SQL allows us to use the comparison operators to

compare strings and arithmetic expressions, as well as special types, such as date types.

Queries on Multiple Relations

So far our example queries were on a single relation. Queries often need to access

information from multiple relations. We now study how to write such queries. For

example, suppose we want to answer the query “Retrieve the names of all instructors,

along with their department names and department building name.”

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

42

Looking at the schema of the relation instructor, we realize that we can get the

department name from the attribute deptname, but the department building name is

present in the attribute building of the relation department. To answer the query, each

tuple in the instructor relation must be matched with the tuple in the department relation

whose deptname value matches the deptname value of the instructor tuple.

In SQL, to answer the above query,we list the relations that need to be accessed in the

from clause, and specify the matching condition in the where clause. The above query

can be written in SQL as

select name, instructor.deptname, building

from instructor, department

where instructor.deptname= department.deptname;

If the instructor and department relations are as shown in Figures 4.1 and 4.3

respectively, then the result of this query is shown in Figure 4.4.

Figure 4.3: the department relation

Note that the attribute deptname occurs in both the relations instructor and department,

and the relation name is used as a prefix (in instructor.deptnameand

department.deptname) to make clear to which attribute we are referring. In contrast, the

attributes name and building appear in only one of the relations, and therefore do not

need to be prefixed by the relation name. This naming convention requires that the

relations that are present in the from clause have distinct names. We now consider the

general case of SQL queries involving multiple relations. As we have seen earlier, an

SQL query can contain three types of clauses, the select clause, the from clause, and the

where clause.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

43

Figure 4.4: Result of “Retrieve the names of all instructors, along with their department

names and department building name.”

The role of each clause is as follows:

• The select clause is used to list the attributes desired in the result of a query.

• The from clause is a list of the relations to be accessed in the evaluation of the

query.

• The where clause is a predicate involving attributes of the relation in the from

clause.

A typical SQL query has the form

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P;

Each Ai represents an attribute, and each ria relation. P is a predicate. If the where

clause is omitted, the predicate P is true. Although the clauses must be written in the

order select, from, where, the easiest way to understand the operations specified by the

query is to consider the clauses in operational order: first from, then where, and then

select.

The from clause by itself defines a Cartesian product of the relations listed in the

clause. The result relation has all attributes from all the relations in the from clause.

Since the same attribute name may appear in both ri and rj, as we saw earlier, we prefix

the name of the relation from which the attribute originally came, before the attribute

name.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

44

For example, the relation schema for the Cartesian product of relations instructor and

department is:(instructor.ID, instructor.name, instructor.deptname,

instructor.salary,department.deptname, department.building, department.budget)

With this schema, we can distinguish instructor.deptnamefrom department.deptname.

The Cartesian product by itself combines tuples from instructor and department that are

unrelated to each other. Each tuple in instructor is combined with every tuple in

department, even those that refer to a different instructor. The result can bean extremely

large relation, and it rarely makes sense to create such a Cartesian product.

Instead, the predicate in the where clause is used to restrict the combinations created by

the Cartesian product to those that are meaningful for the desired answer. We would

expect a query involving instructor and department to combine a particular tuple t in

instructor with only those tuples in department that refer to the same department to

which t refers. That is, we wish only to match department tuples with instructor tuples

that have the same deptnamevalue. The following SQL query ensures this condition.

select name, instructor.deptname, building

from instructor, department

where instructor.deptname= department.deptname;

Additional Basic Operations

The Rename Operation

The names of the attributes in the result are derived from the names of the attributes in

the relations in the from clause. However, we cannot always derive names in this way,

for several reasons:

First, two relations in the from clause may have attributes with the same name, in which

case an attribute name is duplicated in the result. Second, if we used an arithmetic

expression in the select clause, the resultant attribute does not have a name. Third, even

if an attribute name can be derived from the base relations as in the preceding example,

we may want to change the attribute name in the result. Hence, SQL provides a way of

renaming the attributes of a result relation. It uses the as clause, taking the form:

old-name as new-name

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

45

The as clause can appear in both the select and from clauses. For example, if we want

the attribute name name to be replaced with the name instructor name, we can write the

query as:

select name as instructor_name, course_id

from instructor, teaches

where instructor.ID= teaches.ID;

The teaches relation schema is as follows: teaches (ID, course id, sec id, semester,

year).

The as clause is particularly useful in renaming relations. One reason to rename a

relation is to replace a long relation name with a shortened version that is more

convenient to use elsewhere in the query. To illustrate, we rewrite the query “For all

instructors in the university who have taught some course, find their names and the

course ID of all courses they taught.”

select T.name, S.course_id

from instructor as T, teaches as S

where T.ID= S.ID;

Another reason to rename a relation is a case where we wish to compare tuples in the

same relation. We then need to take the Cartesian product of a relation with itself and,

without renaming, it becomes impossible to distinguish one tuple from the other.

Suppose that we want to write the query “Find the names of all instructors whose salary

is greater than at least one instructor in the Biology department.” We can write the SQL

expression:

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

Observe that we could not use the notation instructor.salary, since it would not be clear

which reference to instructor is intended.

In the above query, T and S can be thought of as copies of the relation instructor, but

more precisely, they are declared as aliases, that is as alternative names, for the relation

instructor. An identifier, such as T and S, that is used to rename a relation is referred to

as a correlation name in the SQL standard, but is also commonly referred to as a table

alias, or a correlation variable, or a tuple variable.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

46

String Operations

SQL specifies strings by enclosing them in single quotes, for example, ’Computer’. A

single quote character that is part of a string can be specified by using two single quote

characters; for example, the string “It’s right” can be specified by “It”s right”. The SQL

standard specifies that the equality operation on strings is case sensitive; as a result the

expression “’comp. sci.’ = ’Comp. Sci.’” evaluates to false.

However, some database systems, such as My SQL and SQL Server, do not distinguish

uppercase from lowercase when matching strings; as a result “’comp. sci.’=

’Comp.Sci.’” would evaluate to true on these databases. This default behavior can,

however, be changed, either at the database level or at the level of specific attributes.

SQL also permits a variety of functions on character strings, such as concatenating

(using “_”), extracting substrings, finding the length of strings, converting strings to

uppercase (using the function upper(s) where s is a string) and lowercase (using the

function lower(s)), removing spaces at the end of the string (using trim(s)) and so on.

There are variations on the exact set of string functions supported by different database

systems. Pattern matching can be performed on strings, using the operator like. We

describe patterns by using two special characters:

• Percent (%): The % character matches any substring.

• Underscore (_): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase

characters, or vice versa. To illustrate pattern matching, we consider the following

examples:

• ’Intro%’ matches any string beginning with “Intro”.

• ’%Comp%’ matches any string containing “Comp” as a substring, for example,

’Intro. To Computer Science’, and ’Computational Biology’.

• ’ _ _ _’ matches any string of exactly three characters.

• ’ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query

“Find the names of all departments whose building name includes the substring

‘Watson’.” This query can be written as:

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

47

select deptname

from department

where building like ’%Watson%’;

For patterns to include the special pattern characters (that is,%and), SQL allows the

specification of an escape character. The escape character is used immediately before a

special pattern character to indicate that the special pattern character is to be treated like

a normal character. We define the escape character for a like comparison using the

escape keyword. To illustrate, consider the following patterns, which use a backslash (\)

as the escape character:

• like ’ab\%cd%’ escape ’\’ matches all strings beginning with “ab%cd”.

• like ’ab\\cd%’ escape ’\’ matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not like

comparison operator.

Attribute Specification in Select Clause

The asterisk symbol “ * ” can be used in the select clause to denote “all attributes.”

Thus, the use of instructor.* in the select clause of the query:

select instructor.*

from instructor, teaches

where instructor.ID= teaches.ID;

indicates that all attributes of instructor are to be selected. A select clause of the form

select * indicates that all attributes of the result relation of the from clause are selected.

Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation are

displayed. The order by clause causes the tuples in the result of a query to appear in

sorted order. To list in alphabetic order all instructors in the Physics department, we

write:

select name

from instructor

where deptname = ’Physics’

order by name;

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

48

By default, the order by clause lists items in ascending order. To specify the sort order,

we may specify desc for descending order or asc for ascending order. Furthermore,

ordering can be performed on multiple attributes. Suppose that we wish to list the entire

instructor relation in descending order of salary. If several instructors have the same

salary, we order them in ascending order by name. We express this query in SQL as

follows:

select *

from instructor

order by salary desc, name asc;

Where Clause Predicates

SQL includes a between comparison operator to simplify where clauses which

specifies that a value be less than or equal to some value and greater than or equal to

some other value. If we wish to find the names of instructors with salary amounts

between $90,000 and $100,000, we can use the between comparison to write:

select name

from instructor

where salary between 90000 and 100000;

instead of:

select name

from instructor

where salary <= 100000 and salary >= 90000;

Similarly, we can use the not between comparison operator. SQL permits us to use the

notation (v1, v2, . . . , vn) to denote a tuple of arity n containing values v1, v2, . . . , vn.

The comparison operators can be used on tuples, and the ordering is defined

lexicographically. For example, (a1, a2) <= (b1, b2) is true if a1 <= b1 and a2 <= b2;

similarly, the two tuples are equal if all their attributes are equal. Thus, the preceding

SQL query can be rewritten as follows:

select name, course_id

from instructor, teaches

where (instructor.ID, deptname) = (teaches.ID, ’Biology’);

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

49

Set Operations

The SQL operations union, intersect, and except operate on relations and correspond

to the mathematical set-theory operations ∪, ∩, and −. We shall now construct queries

 involving the union, intersect, and except operations over two sets. Consider each

course in a university which may be offered multiple times, across different semesters,

or even within a semester. We need a relation schema to describe each individual

offering, or section, of the class in the university. The schema is section (course id, sec

id, semester, year, building, room number, time slot id) Figure 4.5 shows a sample

instance of the section relation.

Figure 4.5. The section relation

The Union Operation

To find the set of all courses taught either in Fall 2009 or in Spring 2010, or both,

we write:

(select course_id

from section

where semester = ’Fall’ and year= 2009)

union

(select course_id

from section

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

50

where semester = ’Spring’ and year= 2010);

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

51

The union operation automatically eliminates duplicates, unlike the select clause. Thus,

using the section relation, where two sections of CS-319 are offered in Spring 2010, and

a section of CS-101 is offered in the Fall 2009 as well as in the Fall 2010 semester, CS-

101 and CS-319 appear only once in the result. If we want to retain all duplicates, we

must write union all in place of union:

(select course_id

from section

where semester = ’Fall’ and year= 2009)

union all

(select course_id

from section

where semester = ’Spring’ and year= 2010);

The number of duplicate tuples in the result is equal to the total number of duplicates

that appear in both input sets. So, in the above query, each of CS-319and CS-101 would

be listed twice.

The Intersect Operation

To find the set of all courses taught in the Fall 2009 as well as in Spring 2010 we write:

(select course_id

from section

where semester = ’Fall’ and year= 2009)

intersect

(select course_id

from section

where semester = ’Spring’ and year= 2010);

The result relation, contains only one tuple with CS-101. The intersect operation

automatically eliminates duplicates. If we want to retain all duplicates, we must write

intersect all in place of intersect.

The Minus Operation

To find all courses taught in the Fall 2009 semester but not in the Spring 2010

semester, we write:

(select course_id

from section

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

52

where semester = ’Fall’ and year= 2009)

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

53

minus

(select course_id

from section

where semester = ’Spring’ and year= 2010);

The result of this query contains CS-347 and PHY-101. The minus operation outputs

all tuples from its first input that do not occur in the second input; that is, it performs set

difference. The operation automatically eliminates duplicates in the inputs before

performing set difference. If we want to retain duplicates, we must write minus all in

place of minus:

Null Values

Null values present special problems in relational operations, including arithmetic

operations, comparison operations, and set operations. The result of an arithmetic

expression (involving, for example +, −, ∗, or /) is null if any of the input values is null.

For example, if a query has an expression r.A+ 5, and r.A is null for a particular tuple,

then the expression result must also be null for that tuple. Comparisons involving nulls

are more of a problem.

For example, consider the comparison “1 <null”. It would be wrong to say this is true

since we do not know what the null value represents. But it would likewise be wrong to

claim this expression is false; if we did, “not (1 <null)” would evaluate to true, which

does not make sense. SQL therefore treats as unknown the result of any comparison

involving a null value. This creates a third logical value in addition to true and false.

Since the predicate in a where clause can involve Boolean operations such as and, or,

and not on the results of comparisons, the definitions of the Boolean operations are

extended to deal with the value unknown.

• and: The result of true and unknown is unknown, false and unknown is false,

while unknown and unknown is unknown.

• or: The result of true or unknown is true, false or unknown is unknown, while

unknown or unknown is unknown.

• not: The result of not unknown is unknown.

If the where clause predicate evaluates to either false or unknown for a tuple, that tuple

is not added to the result.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

54

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

55

SQL uses the special keyword null in a predicate to test for a null value. Thus, to find

all instructors who appear in the instructor relation with null values for salary, we write:

select name

from instructor

where salary is null;

The predicate is not null succeeds if the value on which it is applied is not null.

Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as

input and return a single value. SQL offers five built-in aggregate functions:

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

The input to sum and avg must be a collection of numbers, but the other operators can

operate on collections of nonnumeric data types, such as strings, as well.

Basic Aggregation

Consider the query “Find the average salary of instructors in the Computer Science

department”. We write this query as follows:

select avg (salary)

from instructor

where deptname= ’Comp. Sci.’;

The result of this query is a relation with a single attribute, containing a single tuple

with a numerical value corresponding to the average salary of instructors in the

Computer Science department. The database system may give an arbitrary name to the

result relation attribute that is generated by aggregation; however, we can give a

meaningful name to the attribute by using the as clause as follows:

select avg (salary) as avg salary

from instructor

where deptname= ’Comp. Sci.’;

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

56

In the instructor relation of Figure 4.1, the salaries in the Computer Science department

are$75,000, $65,000, and $92,000. The average balance is $232,000/3=

$77,333.33.Retaining duplicates is important in computing an average. Suppose the

Computer Science department adds a fourth instructor whose salary happens to be

$75,000. If duplicates were eliminated, we would obtain the wrong answer ($232,000/4

= $58.000) rather than the correct answer of $76,750.There are cases where we must

eliminate duplicates before computing an aggregate function. If we do want to eliminate

duplicates, we use the key word distinct in the aggregate expression. An example arises

in the query “Find the total number of instructors who teach a course in the Spring 2010

semester.” In this case, an instructor counts only once, regardless of the number of

course sections that the instructor teaches. The required information is contained in the

relation teaches, and we write this query as follows:

select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010;

Because of the keyword distinct preceding ID, even if an instructor teaches more than

one course, she is counted only once in the result. We use the aggregate function count

frequently to count the number of tuples in a relation. The notation for this function in

SQL is count (*). Thus, to find the number of tuples in the instructor relation, we write

select count (*)

from instructor;

SQL does not allow the use of distinct with count (*). It is legal to use distinct with

max and min, even though the result does not change. We can use the keyword all in

place of distinct to specify duplicate retention, but, since all is the default, there is no

need to do so.

Aggregation with Grouping

There are circumstances where we would like to apply the aggregate function not only

to a single set of tuples, but also to a group of sets of tuples; we specify this wish in

SQL using the group by clause. The attribute or attributes given in the group by clause

are used to form groups. Tuples with the same value on all attributes in the group by

clause are placed in one group.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

57

As an illustration, consider the query “Find the average salary in each department.”We

write this query as follows:

select deptname, avg (salary) as avg salary

from instructor

group by deptname;

Figure 4.6 shows the tuples in the instructor relation grouped by the deptname attribute,

which is the first step in computing the query result. The specified aggregate is

computed for each group, and the result of the query is shown in Figure 4.7.

Figure 4.6: the tuples in the instructor relation grouped by the deptname attribute

Figure 4.7: The result relation for the query “Find the average salary in each

department”.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

58

In contrast, consider the query “Find the average salary of all instructors.” We write this

query as follows:

select avg (salary)

from instructor;

In this case the group by clause has been omitted, so the entire relation is treated as a

single group.

The Having Clause

At times, it is useful to state a condition that applies to groups rather than to tuples. For

example, we might be interested in only those departments where the average salary of

the instructors is more than $42,000. This condition does not apply to a single tuple;

rather, it applies to each group constructed by the group by clause. To express such a

query, we use the having clause of SQL. SQL applies predicates in the having clause

after groups have been formed, so aggregate functions may be used. We express this

query in SQL as follows:

select deptname, avg (salary) as avg salary

from instructor

group by deptname

having avg (salary) >42000;

The result is shown in Figure 4.8.

Figure 4.8: The result relation for the query “Find the average salary of instructors in

those departments where the average salary is more than $42,000.”

As was the case for the select clause, any attribute that is present in the having clause

without being aggregated must appear in the group by clause, otherwise the query is

treated as erroneous.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

59

The meaning of a query containing aggregation, group by, or having clauses is defined

by the following sequence of operations:

1. As was the case for queries without aggregation, the from clause is first evaluated

to get a relation.

2. If a where clause is present, the predicate in the where clause is applied on the

result relation of the from clause.

3. Tuples satisfying the where predicate are then placed into groups by the group by

clause if it is present. If the group by clause is absent, the entire set of tuples

satisfying the where predicate is treated as being in one group.

4. The having clause, if it is present, is applied to each group; the groups that do not

satisfy the having clause predicate are removed.

5. The select clause uses the remaining groups to generate tuples of the result of the

query, applying the aggregate functions to get a single result tuple for each group.

To illustrate the use of both a having clause and a where clause in the same query, we

consider the query “For each course section offered in 2009, find the average total

credits (tot cred) of all students enrolled in the section, if the section had at least 2

students.”, using takes and student schema as given below.

student (ID, name, deptname, tot cred)

takes (ID, course_id,sec_id, semester, year, grade)

Note: Underlined attributes together form the Primary key of the schema.

select course_id, semester, year, sec id, avg (tot cred)

from takes natural join student

where year = 2009

group by course_id, semester, year, sec_id

having count (ID) >= 2;

Note that all the required information for the preceding query is available from the

relations takes and student, and that although the query pertains to sections, a join with

section is not needed.

Aggregation with Null and Boolean Values

Aggregate functions treat nulls according to the following rule: All aggregate functions

except count (*) ignore null values in their input collection. As a result of null values

being ignored, the collection of values may be empty. The count of an empty collection

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

60

is defined to be 0, and all other aggregate operations return a value of null when applied

on an empty collection.

Lab Exercises:

For the insurance database demonstrate how you

1. Find the total number of people who owned cars that were involved in accidents in

2008.

2. Find the number of accidents in which cars belonging to a specific model were

involved.

3. Produce a listing with header as OWNER_NAME, No. of Accidents, and Total

Damage Amount in a descending order on total damage.

4. List the Owners who made more than 2 accidents in a year.

5. List the owners who are not involved in any accident.

Additional Exercises:

1. For the order processing database demonstrate how you

a. Display the names of the customers who have purchased items on 09/05/2015.

b. Count the total number of items in each order.

c. Find the order with maximum number of items in it.

d. Find the date on which maximum number of orders were shipped.

e. Demonstrate the handling of data in ORDER_ITEMS relation on deletion of

any item from the ITEM relation.

f. List the order no for the orders that were shipped from all the warehouses that

the company has in a specific city.

g. List the customer with a specific surname.

h. List the customers in descending order of their total order amount.

i. Identify the customer with at least three orders that shipped on the particular

date.

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

61

[OBSERVATION SPACE -LAB 4]

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

[OBSERVATION SPACE – LAB 4]

62

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

[OBSERVATION SPACE – LAB 4]

63

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

[OBSERVATION SPACE – LAB 4]

64

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

[OBSERVATION SPACE – LAB 4]

65

DBS LAB MANUAL LAB NO.4: BASIC OPERATIONS OF SQL QUERIES

[OBSERVATION SPACE – LAB 4]

66

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

67

LAB NO.: 5 Date:

NESTED SUBQUERIES

Objectives:

• To work on nested subquery concept of SQL.

Introduction:

Nested Sub queries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-where

expression that is nested within another query. A common use of subqueries is to

perform tests for set membership, make set comparisons, and determine set

cardinality, by nesting subqueries in the where clause.

Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests for set

membership, where the set is a collection of values produced by a select clause. The

not in connective tests for the absence of set membership. As an illustration, reconsider

the query “Find all the courses taught in the both the Fall 2009 and Spring 2010

semesters.” Earlier, we wrote such a query by intersecting two sets: the set of courses

taught in Fall2009 and the set of courses taught in Spring 2010.We can take the

alternative approach of finding all courses that were taught in Fall 2009 and that are also

members of the set of courses taught in Spring 2010. Clearly, this formulation generates

the same results as the previous one did, but it leads us to write our query using the in

connective of SQL.

We begin by finding all courses taught in Spring 2010, and we write the subquery

(selectcourse_id

from section

where semester = ’Spring’ and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and thatappear

in the set of courses obtained in the subquery. We do so by nesting the subquery

in the where clause of an outer query. The resulting query is

select distinct course_id

from section

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

68

where semester = ’Fall’ and year= 2009 and

course id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

This example shows that it is possible to write the same query several ways in SQL.

This flexibility is beneficial, since it allows a user to think about the query in the way

that seems most natural.

We use the not in construct in a way similar to the in construct. For example, to find all

the courses taught in the Fall 2009 semester but not in the Spring 2010semester, we can

write:

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

The in and not in operators can also be used on enumerated sets. The following query

selects the names of instructors whose names are neither “Mozart” nor “Einstein”.

select distinct name

from instructor

where name not in (’Mozart’, ’Einstein’);

In the preceding examples, we tested membership in a one-attribute relation. It is also

possible to test for membership in an arbitrary relation in SQL. For example, we can

write the query “find the total number of (distinct) students who have taken course

sections taught by the instructor with ID 110011” as follows:

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in (select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

69

Set Comparison: As an example of the ability of a nested subquery to compare sets,

consider the query “Find the names of all instructors whose salary is greater than at least

one instructor in the Biology department.”

select name

from instructor

where salary >some (select salary

from instructor

where deptname = ’Biology’);

The subquery:

(select salary

from instructor

where deptname = ’Biology’)

generates the set of all salary values of all instructors in the Biology department.

The phrase “greater than at least one” is represented in SQL by >some. The >some

comparison in the where clause of the outer select is true if the salary value of the tuple

is greater than at least one member of the set of all salary values for instructors in

Biology. SQL also allows <some, <= some, >= some, = some, and <>some

comparisons. As an exercise, verify that = some is identical to in, whereas <>some is

not the same as not in.

Now we modify our query slightly. Let us find the names of all instructors who have a

salary value greater than that of each instructor in the Biology department. The

construct>all corresponds to the phrase “greater than all.” Using this construct, we

write the query as follows:

select name

from instructor

where salary >all (select salary

from instructor

where dept name = ’Biology’);

As it does for some, SQL also allows <all, <= all, >= all, = all, and <>all

comparisons. As an exercise, verify that <>all is identical to not in, whereas =all is not

the same as in.

As another example of set comparisons, consider the query “Find the departments that

have the highest average salary. “We begin by writing a query to find all average

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

70

salaries, and then nest it as a subquery of a larger query that finds those departments for

which the average salary is greater than or equal to all average salaries:

select deptname

from instructor

group by deptname

having avg (salary) >= all (select avg (salary)

from instructor

group by deptname);

Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result. The

exists construct returns the value true if the argument subquery is nonempty. Using the

exists construct, we can write the query “Find all courses taught in both the Fall

2009semester and in the Spring 2010 semester” in still another way:

select course_id

from section as S

where semester = ’Fall’ and year= 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010 and

S.course_id= T.course_id);

The above query also illustrates a feature of SQL where a correlation name from an

outer query (S in the above query), can be used in a subquery in the where clause. A

subquery that uses a correlation name from an outer query is called a correlated

subquery. We can test for the nonexistence of tuples in a subquery by using the not

exists Construct. To illustrate the not exists operator, consider the query “Find all

students who have taken all courses offered in the Biology department.” Using the

except construct, we can write the query as follows:

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where deptname = ’Biology’)

except

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

71

Here, the subquery:

(select T.course_id

from takes as T

where S.ID = T.ID));

(select course_id

from course

where deptname = ’Biology’)

finds the set of all courses offered in the Biology department. The subquery:

(select T.course_id

from takes as T

where S.ID = T.ID)

finds all the courses that student S.ID has taken. Thus, the outer select takes each

student and tests whether the set of all courses that the student has taken contains the set

of all courses offered in the Biology department.

Test for the Absence of Duplicate Tuples

SQL includes a boolean function for testing whether a subquery has duplicate tuples in

its result. The unique construct returns the value true if the argument subquery contains

no duplicate tuples. Using the unique construct, we can write the query “Find all

courses that were offered at most once in 2009” as follows:

select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id and

R.year = 2009);

Note that if a course is not offered in 2009, the subquery would return an empty result,

and the unique predicate would evaluate to true on the empty set.

Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause. The key concept

applied here is that any select-from-where expression returns a relation as a result

and, therefore, can be inserted into another select-from-where anywhere that

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

72

a relation can appear. Consider the query “Find the average instructors’ salaries of those

departments where the average salary is greater than $42,000.” We wrote this query

using the having clause. We can now rewrite this query, without using the having

clause, by using a subquery in the from clause, as follows:

select deptname, avg_salary

from (select dept_name, avg (salary) as avg salary

from instructor

group by deptname)

where avg_salary >42000;

The subquery generates a relation consisting of the names of all departments and their

corresponding average instructors’ salaries. The attributes of the subquery result can be

used in the outer query, as can be seen in the above example. Note that we do not need

to use the having clause, since the subquery in the from clause computes the average

salary, and the predicate that was in the having clause earlier is now in the where

clause of the outer query. We can give the subquery result relation a name, and rename

the attributes using the as clause, as illustrated below.

select deptname, avg_salary

from (select deptname, avg (salary)

from instructor

group by deptname)

as deptavg (deptname, avg_salary)

where avg_salary >42000;

The subquery result relation is named deptavg, with the attributes deptname

and avg_salary.

As another example, suppose we wish to find the maximum across all departments

of the total salary at each department. The having clause does not help us in this task,

but we can write this query easily by using a subquery in the from clause, as follows:

select max (tot salary)

from (select deptname, sum(salary)

from instructor

group by deptname) as dept total (deptname, tot salary);

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

73

The with Clause

The with clause provides away of defining a temporary relation whose definition is

available only to the query in which the with clause occurs. Consider the following

query, which finds those departments with the maximum budget.

with max_budget (value) as

(select max(budget)

from department)

select budget

from department, max_budget

where department.budget = max budget.value;

The with clause defines the temporary relation max_budget, which is used in the

immediately following query. The with clause, introduced in SQL:1999, is supported

by many, but not all, database systems.

Scalar Subqueries

SQL allows subqueries to occur wherever an expression returning a value is permitted,

provided the subquery returns only one tuple containing a single attribute; such

subqueries are called scalar subqueries. For example, a subquery can be used in the

select clause as illustrated in the following example that lists all departments along with

the number of instructors in each department:

select deptname,

(select count(*)

from instructor

where department.deptname = instructor.deptname)

as num_instructors

from department;

The subquery in the above example is guaranteed to return only a single value since it

has a count(*) aggregate without a group by. The example also illustrates the usage of

correlation variables, that is, attributes of relations in the from clause of the outer

query, such as department.deptname in the above example. Scalar subqueries can occur

in select, where, and having clauses. Scalar subqueries may also be defined without

aggregates. It is not always possible to figure out at compile time if a subquery can

return more than one tuple in its result; if the result has more than one tuple when the

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

74

subquery is executed, a run-time error occurs.

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

75

Lab Exercises:

1. Consider the following database of student enrollment in courses and books adopted

for each course

STUDENT (regno: varchar(20), name: varchar(50), major: varchar(20),

bdate:date)

COURSE (course#:int, cname: varchar(30), dept: varchar(30))

ENROLL (regno: varchar(20), course#:int, sem:int,

book_isbn:int)

BOOK_ADOPTION (course#:int, sem:int, book_isbn:int)

TEXT (book_isbn:int, booktitle: varchar(50), publisher: varchar(50), author:

varchar(50))

i. Create the above tables by properly specifying the primary keys and the

foreign keys.

ii. Enter at least five tuples for each relation.

iii. Execute following queries on the database using nested subquery concept:

a. List the courses which uses more than 1 text book.

b. List the departments whose all course text books are published by a

particular publisher.

c. Find the students who have enrolled for course of more than one

department

d. Produce a list of students who are not enrolled.

e. List the department which adopts all the books from the particular

publisher.

f. List the books which are adopted by the course as well as enrolled by

the student.

g. List the courses which has adapted at least two books from a specific

publisher.

h. Identify the students who are enrolled for maximum number of books.

i. List the publishers along with the number of books published by them.

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

76

j. List the students who enrolled for all the books adopted by their course.

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

77

Additional Exercises:

For the order processing database demonstrate using nested subquery how you

i. Find the customers whose address is not known yet.

ii. Find the customer who has made a maximum purchase till date.

iii. Display all those orders which have not been shipped yet.

iv. Select all those items which have not been bought by any customer.

v. Find the item which has been bought by most of the customers.

vi. List the orders which are not shipped on a particular date.

vii. Identify the customers whose orders are shipped on a both specified days.

viii. Give the customer information whose all orders are shipped from a single

warehouse.

ix. List the customers with maximum number of orders.

[OBSERVATION SPACE – LAB 5]

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

[OBSERVATION SPACE – LAB 5]

78

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

[OBSERVATION SPACE – LAB 5]

79

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

[OBSERVATION SPACE – LAB 5]

80

DBS LAB MANUAL LAB NO.5: NESTED SUBQUERIES

[OBSERVATION SPACE – LAB 5]

81

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

82

LAB NO.: 6 Date:

Objectives:

PROCEDURAL LANGUAGE

• To learn how to use PL/SQL concepts.

Introduction to PL/SQL:

PROCEDURES

A procedure is a module performing one or more actions; it does not need to return any

values. The syntax for creating a procedure is as follows:

CREATE OR [REPLACE] PROCEDURE name

[(parameter[, parameter, ...])]

AS

[local declarations]

BEGIN

executable statements

[EXCEPTION

exception handlers]

END [name];

/

• A procedure may have 0 to many parameters.

• Every procedure has two parts:

1. The header portion, which comes before AS (sometimes you will see IS—they

are interchangeable), keyword (this contains the procedure name and the

parameter list),

2. The body, which is everything after the AS keyword.

• The word REPLACE is optional.

When the word REPLACE is not used in the header of the procedure, in order to change

the code in the procedure, it must be dropped first and then re-created.

Example:

CREATE OR REPLACE PROCEDURE insert Person

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

83

(id IN VARCHAR, dob IN DATE, fname IN VARCHAR, lname IN VARCHAR) IS

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

84

counter INTEGER; --declaration part

BEGIN

SELECT COUNT(*) INTO counter FROM person p WHERE p.pid = id;

IF (counter > 0) THEN

-- person with the given pid already exists

DBMS_OUTPUT.PUT_LINE ('WARNING Inserting person: person with pid ' || id || '

already exists!');

ELSE

INSERT INTO person VALUES (id, DOB, fname, lname);

DBMS_OUTPUT.PUT_LINE ('Person with pid ' || id || ' is inserted.');

END IF;

/

• In order to execute a procedure in SQL*Plus use the following syntax:

EXECUTE Procedure_name

SQL> EXECUTE insertPerson (‘p1’, ’10-10-2000’, ‘John’,’Smith’);

PARAMETERS

• Parameters are the means to pass values to and from the calling environment to the

server.

• These are the values that will be processed or returned via the execution of the

procedure.

• There are three types of parameters:

• IN, OUT, and IN OUT.

• Modes specify whether the parameter passed is read in or a receptacle for what

comes out.

• IN passes value into the procedure, OUT passes back from the procedure and

INOUT does both.

FUNCTIONS

• Functions are a type of stored code and are very similar to procedures.

• The significant difference is that a function is a PL/SQL block that returns a

single value.

• Functions can accept one, many, or no parameters, but a function must have a

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

85

return clause in the executable section of the function.

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

86

• The data type of the return value must be declared in the header of the function.

• A function is not a stand-alone executable in the way that a procedure is: It must be

used in some context. You can think of it as a sentence fragment.

• A function has output that needs to be assigned to a variable, or it can be used in a

SELECT statement.

• The syntax for creating a function is as follows:

CREATE [OR REPLACE] FUNCTION function_name

(parameter list)

RETURN datatype

IS

BEGIN

<body>

RETURN (return_value);

END;

/

• The function does not necessarily have to have any parameters, but it must have a

RETURN value declared in the header, and it must return values for all the varying

possible execution streams.

• The RETURN statement does not have to appear as the last line of the main

execution section, and there may be more than one RETURN statement (there

should be a RETURN statement for each exception).

• A function may have IN, OUT, or IN OUT parameters.

CREATE OR REPLACE FUNCTION show_description

(i_course_no IN number)

RETURN varchar2

AS

v_description varchar2(50);

BEGIN

SELECT description

INTO v_description

FROM course

WHERE course_no = i_course_no;

RETURN v_description;

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

87

EXCEPTION

DBS LAB MANUAL LAB NO.6: PROCEDURAL LANGUAGE

88

WHEN NO_DATA_FOUND

THEN

RETURN('The Course is not in the database');

WHEN OTHERS

THEN

END;

 /

RETURN('Error in running show_description');

89

Making Use Of Functions

• Using an anonymous block

SET SERVEROUTPUT ON -- Setting the server output on

DECLARE

v_description

VARCHAR2(50); BEGIN

v_description := show_description(&sv_cnumber);

DBMS_OUTPUT.PUT_LINE(v_description);

END;

/

• Using SQL statements

SELECT course_no, show_description(course_no)

FROM course;

OR

SELECT show_description(course_no) FROM Dual;

Where Dual is dummy table.

Lab Exercise:

1. Create a function to return total number of accidents happened in a particular year.

2. Create a procedure to display total damage caused due to an accident for a particular

driver on a specific year.

3. Create a procedure to display accident information which took place in a particular

location.

4. Create a procedure to identify all drivers who have never been involved in any

accidents. The procedure should return their driver-id, name, and address

5. Write a function that takes a license as input and returns the total number of

accidents in which the car was involved

Additional Exercise:

1. Write a PL/SQL function to withdraw money from the bank account.

2. Create a procedure to display 20% discount amount on each order provided order

has at least five items.

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

90

LAB 7:

PROCEDURAL LANGUAGE

Objectives:

To learn how to use PL/SQL concepts

TRIGGERS

A database trigger is a stored PL/SQL program unit associated with a specific database

table. ORACLE executes (fires) a database trigger automatically when a given SQL

operation (like INSERT, UPDATE or DELETE) affects the table. Unlike a procedure,

or a function, which must be invoked explicitly, database triggers are invoked

implicitly.

Database triggers can be used to perform any of the following:

• Audit data modification

• Log events transparently

• Enforce complex business rules

• Implement complex security authorizations

• You can associate up to 12 database triggers with a given table.

• A database trigger has three parts:

• A triggering event, an optional trigger constraint, and a trigger action.

• When an event occurs, a database trigger is fired, and a predefined PL/SQL block

will perform the necessary action.

SYNTAX:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE|AFTER} triggering_event ON table_name

[FOR EACH ROW]

DECLARE

Declaration statements

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

91

BEGIN

Executable statements

EXCEPTION

Exception-handling statements

END;

 /

The trigger_name references the name of the trigger. BEFORE or AFTER specify

when the trigger is fired (before or after the triggering event). The triggering_event

references a DML statement issued against the table (e.g., INSERT,DELETE,

UPDATE). The table_name is the name of the table associated with the trigger.

The clause, FOR EACH ROW, specifies a trigger is a row trigger and fires once for

each modified row. Bear in mind that if you drop a table, all the associated triggers

for the table are dropped as well.

Triggers may be called BEFORE or AFTER the following events:

INSERT, UPDATE and DELETE. The before/after options can be used to specify

when the trigger body should be fired with respect to the triggering statement. If the

user indicates a BEFORE option, then Oracle fires the trigger before executing the

triggering statement. On the other hand, if an AFTER is used, Oracle fires the

trigger after executing the triggering statement. A trigger may be a ROW or

STATEMENT type. If the statement FOR EACH ROW is present in the CREATE

TRIGGER clause of a trigger, the trigger is a row trigger. A row trigger is fired for

each row affected by an triggering statement. A statement trigger, however, is fired

only once for the triggering statement, regardless of the number of rows affected by

the triggering statement

Example: statement trigger

CREATE OR REPLACE TRIGGER mytrig1

BEFORE DELETE OR INSERT OR UPDATE ON employee

BEGIN

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

92

IF(TO_CHAR(SYSDATE, 'day') IN ('sat', 'sun')) OR

(TO_CHAR(SYSDATE,'hh:mi') NOT BETWEEN '08:30' AND '18:30')

THEN RAISE_APPLICATION_ERROR(-20500, 'table is secured');

END IF;

END;

/

The above example shows a trigger that limits the DML actions to the employee

table to weekdays from 8.30am to 6.30pm. If a user tries to insert/update/delete a

row in the EMPLOYEE table, a warning message will be prompted.

Example: ROW Trigger

CREATE OR REPLACE TRIGGER mytrig2

AFTER DELETE OR INSERT OR UPDATE ON employee

FOR EACH ROW

BEGIN

IF DELETING THEN

INSERT INTO xemployee (emp_ssn, emp_last_name,emp_first_name, deldate)

VALUES (:old.emp_ssn, :old.emp_last_name,:old.emp_first_name, sysdate);

ELSIF INSERTING THEN

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

93

INSERT INTO nemployee (emp_ssn, emp_last_name,emp_first_name,

adddate)

VALUES (:new.emp_ssn, :new.emp_last_name,:new.emp_first_name, sysdate);

ELSIF UPDATING('emp_salary') THEN

INSERT INTO cemployee (emp_ssn, oldsalary, newsalary, up_date)

VALUES (:old.emp_ssn,:old.emp_salary, :new.emp_salary, sysdate);

END IF;

END;

/

:OLD and :NEW

• When a DML statement changes a column the old and new values are visible to

the executing code

• This is done by prefixing the table column with :old or :new

• :new is useful for INSERT and UPDATE

• :old is useful for DELETE and UPDATE

• triggers may fire other triggers in which case they are CASCADING. Try not to

create too many interdependencies with triggers!

CREATE OR REPLACE TRIGGER faculty_after_update_row

AFTER UPDATE ON faculty EDB

FOR EACH ROW

BEGIN

IF UPDATING ('dept') AND :old.dept <> :new.dept

THEN UPDATE department SET chair = NULL WHERE chair = :old.pid;

END IF;

END;

/

DECLARE

percent_id agents.percent%TYPE;

BEGIN

SELECT percent INTO percent_id FROM agents WHERE aid = 'a02';

IF percent_id > 0 THEN

INSERT INTO agents (aid, aname, city) VALUES ('a07', 'John', 'Corpus');

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

94

END IF;

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

95

 END;

/

• The previous trigger is used to keep track of all the transactions performed on the

employee table. If any employee is deleted, a new row containing the details of this

employee is stored in a table called x employee. Similarly, if a new employee is

inserted, a new row is created in another table called n employee, and so on.

• Note that we can specify the old and new values of an updated row by prefixing the

column names with the :OLD and :NEW qualifiers.

ENABLING, DISABLING, DROPPING TRIGGERS

SQL>ALTER TRIGGER trigger_name DISABLE;

SQL>ALTER TABLE table_name DISABLE ALL TRIGGERS;

SQL>ALTER TABLE table_name ENABLE trigger_name;

SQL> ALTER TABLE table_name ENABLE ALL TRIGGERS;

SQL> DROP TRIGGER trigger_name

VC# code snippet to execute PL/SQL procedure

OracleCommand c= new OracleCommand(“Procedure name”, connObject);

c.CommandText=“Procedure name”:

c.CommandType=CommandType.StoredProcedure;

c.ExecuteNonQuery();

CURSOR

A cursor is a temporary work area created in the system memory when a SQL

statement is executed. A cursor contains information on a select statement and the

rows of data accessed by it. This temporary work area is used to store the data

retrieved from the database, and manipulate this data. A cursor can hold more than

one row, but can process only one row at a time. The set of rows the cursor holds is

called the active set. There are two types, explicit cursor and implicit cursor. User

created cursor is called explicit cursor. Implicit cursors are automatically created by

the Oracle whenever an SQL statement is executed. Programmers cannot control the

implicit cursors and the information in it.

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

96

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

97

Example: Cursor declaration

DECLARE CURSOR emp_cur IS

SELECT * FROM emp_tbl WHERE salary > 5000;

In the above example we are creating a cursor ‘emp_cur’ on a query which returns

there cords of all the employees with salary greater than 5000.

Once the cursor is created in the declaration section we can access the cursor in the

execution section of the PL/SQL program. There are three steps involved in

accessing the cursor, which are mentioned below,

• Open the cursor.

• Fetch the records in the cursor one at a time.

• Close the cursor.

General form of using a cursor

DECLARE

Variables;

Records;

Create a Cursor;

BEGIN

OPEN Cursor;

FETCH Cursor;

Process the records;

CLOSE Cursor;

END;

/

Example: CURSOR

Give the details of the persons who are involved in more than two accidents in a year

2015.

CREATE OR REPLACE PROCEDURE Disp_person IS

CURSOR emp_cur IS

Select * from Person p1

Where p1.driver_id# IN (Select unique p.driver_id#

From Personp, Accident a, Participatedpa

Where p.driver_id# = pa.driver_id# and

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

98

pa.report_number = a.report_number and

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

99

Extract (Yearfrom a.accd_date)=2015

Group by p.driver_id# Having count(*) > 2);

emp_rec emp_cur%rowtype;

BEGIN

OPEN emp_cur;

LOOP

FETCH emp_cur INTO emp_rec;

EXIT WHEN emp_cur%NOTFOUND;

dbms_output.put_line(emp_rec.driver_id# || ' ' || emp_rec.name || ' '

||emp_rec.address);

END LOOP;

CLOSE emp_cur;

END;

/

Lab Exercises:

Submission of the abstract for the database mini project.

1. Generate a trigger displaying driver information, on participating in an accident

2. Create a trigger that updates a total_damage column in the accident table whenever

a new entry is added to or removed from the participated table

3. List cars involved in accidents with cumulative damage exceeding a specific amount

4. Identify cars that have been involved in more than one accident and calculate the total

damage for each car

5. Calculate the average damage amount for accidents at each location

Additional exercises:

1. Generate a trigger intimating the driver regarding the accidents if the number of

accidents by the driver reaches the count of two.

2. Identify drivers who participated in accidents with cars not owned by them.

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

100

[OBSERVATION SPACE – LAB 7]

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

101

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

102

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

103

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

104

DBS LAB MANUAL LAB NO.7: PROCEDURAL LANGUAGE

105

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

106

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

107

LAB NO.: 8 Date:

DATA ACCESS FROM VC#

• To connect the front end to the back end database.

Introduction:

Database connectivity steps for Visual Studio 2012 version.

Select Tools Menu item

Select Connect to database option

A new window with name Add connection should open,

Then click on change button to change the Data Source which will redirect to the

window with the name change data source.

 In the Change Data Source window, choose ODP .NET, Managed Driver as the

Data Source.

Set User Name to database login id (e.g it1234, without using @orcl)

Set Password to ‘student’

Set Connection Type as EZ Connect

Database host name: 172.16.54.24

Port number:1521

Database service name:ictorcl

Then click on Test Connection. You should get a message saying Test

Connection Succeeded.

Then Click on OK.

Right click on Data connection option under Server Explorer

Copy Connection string value of the Properties parameter, which is to be used in

coding section.

96

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

Add Oracle.DataAccess package into the project which is available at References-

>Assemblies->Extensions option.

In the solution explorer there is field named References. Expand it and check for

96

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

Oracle.

96

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

Data Access. If it is not present, then right click on References and click on Add

Reference (or Go to Project and select Add Reference). Reference manager window

will be opened. Select Extensions under Assemblies which lists out various

component names along with their versions. Select Oracle. Data Access from the list.

(Two versions will be listed- 2.112.3.0and 4.112.3.0. You can choose any one of it by

ticking the checkbox.) Click on OK.

Code for Connecting the GUI to the oracle database.

using Oracle.DataAccess.Client;

using Oracle.DataAccess.Types;

namespace StudentDetails

{

public partial class Form1 : Form

{

OracleConnection conn;

OracleCommand comm;

OracleDataAdapter da;

DataSet ds;

DataTable dt;

DataRow dr;

int i = 0;

public Form1()

{

96

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

InitializeComponent();

}

// Click on Close button should close the complete application.

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

DialogResult dr = MessageBox.Show("Are you sure you want to exit the

Application?", "Exit", MessageBoxButtons.YesNoCancel);

if (dr == DialogResult.Yes)

//e.Cancel = true;

Application.Exit();

}

//Connecting to the database through the connection string

public void connect1()

{

String oradb = "Data Source=Oracle server name;User ID=Oracle login

ID;Password=student";

conn = new OracleConnection(oradb); // C#

conn.Open();

}

NOTE:

string oradb = "Data Source=Oracle Server Name; User ID=Oracle login ID;

Password=password"; this is called connection string. This can be written manually if

you know the data source, user id and password beforehand. If not known then, it can be

obtained by following the steps: Once you open your project on the left palette, there

will be a tab Data Source. Click on that will show you another option Add new Data

Source. This can also be obtained by selecting the Data tab in the menu, under which

you get Add new data source.

When clicked on that option you get a dialog box Data Source Configuration Wizard.

Select Database -> Next -> Data Set. Now you can see an option Connection String.

Click on ‘+’ sign to expand the view. Copy the connection string which is available

when you expand the view. After getting the connection string DONOT CLICK ON

FINISH. Click cancel.

96

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

//On Button click connects to database and fetches the first tuple data

private void Connect_Click(object sender, EventArgs e)

{

connect1();

comm = new OracleCommand();

comm.CommandText = "select * from instructor";

comm.CommandType = CommandType.Text;

ds = new DataSet();

da = new OracleDataAdapter(comm.CommandText, conn);

da.Fill(ds, "instructor");

dt = ds.Tables["instructor"];

int t = dt.Rows.Count;

MessageBox.Show(t.ToString());

dr = dt.Rows[i];

textBox1.Text = dr["id"].ToString();

textBox2.Text = dr["name"].ToString();

textBox3.Text = dr["deptname"].ToString();

textBox4.Text = dr["salary"].ToString();

conn.Close();

}

//On Next click it displays the next tuple in the database. And repeats in a loop once

it reaches the last tuple.

private void Next_Click(object sender, EventArgs e)

{

i++;

if (i >= dt.Rows.Count)

i = 0;

dr = dt.Rows[i];

textBox1.Text = dr["id"].ToString();

textBox2.Text = dr["name"].ToString();

textBox3.Text = dr["deptname"].ToString();

textBox4.Text = dr["salary"].ToString();

}

96

DBS LAB MANUAL LAB NO.8 DATA ACCESS FROM VC#

//Display previous tuple.

private void Previous_Click(object sender, EventArgs e)

{

i--;

if (i < 0)

i = dt.Rows.Count - 1;

dr = dt.Rows[i];

textBox1.Text = dr["id"].ToString();

textBox2.Text = dr["name"].ToString();

textBox3.Text = dr["deptname"].ToString();

textBox4.Text = dr["salary"].ToString();

}

//Insert into the table

private void Insert_Click(object sender, EventArgs e)

{

connect1();

int sal = int.Parse(textBox4.Text);

OracleCommand cm = new OracleCommand();

cm.Connection = conn;

cm.CommandText = "insert into instructor values(’" + textBox1.Text + "’,

’" + textBox2.Text + "’,’" + textBox3.Text + "’,’" + textBox4.Text + "’)";

cm.CommandType = CommandType.Text;

cm.ExecuteNonQuery();

MessageBox.Show("Inserted!");

conn.Close();

}

//Updates into a table

private void Update_Click(object sender, EventArgs e)

{

connect1();

int v = int.Parse(textBox2.Text);

OracleCommand cm = new OracleCommand();

cm.Connection = conn;

cm.CommandText = "update instructor set salary=:pb where deptname =:pdn";

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

cm.CommandType = CommandType.Text;

//Uses OracleParameter to read the parameter from the GUI

OracleParameter pa1 = new OracleParameter();

pa1.ParameterName = "pb";

pa1.DbType = DbType.Int32;

pa1.Value = v;

OracleParameter pa2 = new OracleParameter();

pa2.ParameterName = "pdn";

pa2.DbType = DbType.String;

pa2.Value = textBox1.Text;

cm.Parameters.Add(pa1);

cm.Parameters.Add(pa2);

cm.ExecuteNonQuery();

MessageBox.Show("updated");

conn.Close();

}

//Below is the code snippet to illustrate the use of DataGridView. Have a button and

//datagridview control on the form. On click of the button below code is called

 private void GetGrid_Click(object sender, EventArgs e)

 {

 connect1();

 comm = new OracleCommand();

 comm.CommandText = "select * from instructor";

 comm.CommandType = CommandType.Text;

 ds = new DataSet();

 da = new OracleDataAdapter(comm.CommandText, conn);

 da.Fill(ds, "instructor");

 dt = ds.Tables["instructor"];

 int t = dt.Rows.Count;

 MessageBox.Show(t.ToString());

 dr = dt.Rows[i];

 dataGridView1.DataSource = ds;

 dataGridView1.DataMember = "instructor";

 conn.Close();

 }

//Following is the code snippet to populate a combo box from database.

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

//Have a combobox on the form and call below code on form load.

private void Form1_Load(object sender, EventArgs e)

{

connect1();

comm = new OracleCommand();

comm.CommandText = "select deptname from instructor";

comm.CommandType = CommandType.Text;

ds = new DataSet();

da = new OracleDataAdapter(comm.CommandText, conn);

da.Fill(ds, "instructor");

dt = ds.Tables["instructor"];

int t = dt.Rows.Count;

MessageBox.Show(t.ToString());

comboBox1.DataSource = dt.DefaultView;

comboBox1.DisplayMember = "deptname";

conn.Close();

}

}

Lab exercises:

1. Connect the VC# front end of INSURANCE database with the back end. Execute

the queries given under Lab Exercises (Lab 3 and Lab 4) through front end.

Additional Exercises:

1. Connect the VC# front end of ORDER PROCESSING database to its back end.

Execute the queries given under additional exercise (Lab 4 and Lab 5) for the same

database.

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

[OBSERVATION SPACE – LAB 8]

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

LAB NO.: 9 Date:

User Interface and Relational Database Design

Objectives:

• To design and develop User Interface for the project and design the E-R diagram for

the given problem statement.

Introduction:

Sample E-R Diagram for Hospital Management System:

Figure 7.1: E-R Diagram for Hospital Management System.

Lab exercises:

1. Submission of ER diagram of the mini project

2. Submit the design of the front end of the mini project

3. Specifications for the information to be retrieved from the database. Ex: When the

Author’s name is specified, all the text books written by him should be retrieved.

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

96

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

122

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

123

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

124

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

125

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

126

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

127

DBS LAB MANUAL LAB NO.9 User Interface and Relational Database Design

128

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

129

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

130

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

131

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

132

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

133

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

134

DBS LAB MANUAL LAB NO. 9: RELATIONAL DATABSE DESIGN

[OBSERVATION SPACE – LAB 9]

135

DBS LAB MANUAL LAB NO. 10: DATABASE IMPLEMENTATION AND DATA POPULATION

LAB NO.: 10 Date:

DATABASE IMPLEMENTATION AND DATA POPULATION

Objectives:

• To implement and populate the database of the mini project.

Lab exercises:

1. Implement the database using the normalized relational schema designed in Lab 9.

Populate the database with suitable data.

[OBSERVATION SPACE – LAB 10]

136

DBS LAB MANUAL LAB NO. 10: DATABASE IMPLEMENTATION AND DATA POPULATION

[OBSERVATION SPACE – LAB 10]

137

DBS LAB MANUAL LAB NO. 10: DATABASE IMPLEMENTATION AND DATA POPULATION

[OBSERVATION SPACE – LAB 10]

138

DBS LAB MANUAL LAB NO. 10: DATABASE IMPLEMENTATION AND DATA POPULATION

[OBSERVATION SPACE – LAB 10]

139

DBS LAB MANUAL LAB NO. 10: DATABASE IMPLEMENTATION AND DATA POPULATION

[OBSERVATION SPACE – LAB 10]

140

DBS LAB MANUAL LAB NO. 11: PROJECT IMPLEMENTATION

LAB NO.: 11 Date:

Objectives:

PROJECT IMPLEMENTATION

• To analyze the working of the front end and back end altogether.

Lab exercises:

1. Give the implementation details regarding your project.

[OBSERVATION SPACE – LAB 11]

141

DBS LAB MANUAL LAB NO. 11: PROJECT IMPLEMENTATION

[OBSERVATION SPACE – LAB 11]

142

DBS LAB MANUAL LAB NO. 11: PROJECT IMPLEMENTATION

[OBSERVATION SPACE – LAB 11]

143

DBS LAB MANUAL LAB NO. 11: PROJECT IMPLEMENTATION

[OBSERVATION SPACE – LAB 11]

144

DBS LAB MANUAL LAB NO. 11: PROJECT IMPLEMENTATION

[OBSERVATION SPACE – LAB 11]

145

DBS LAB MANUAL LAB NO. 12: Project Evaluation

LAB NO.: 12 Date:

Objective:

 Project Evaluation

• To test and validate their mini project followed by the demonstration.

Lab Exercises:

1. Demonstrate your project after testing and validation phase.

[OBSERVATION SPACE – LAB 12]

146

DBS LAB MANUAL LAB NO. 12: TESTING AND VALIDATION

[OBSERVATION SPACE – LAB 12]

147

DBS LAB MANUAL LAB NO. 12: TESTING AND VALIDATION

[OBSERVATION SPACE – LAB 12]

148

DBS LAB MANUAL LAB NO. 12: TESTING AND VALIDATION

[OBSERVATION SPACE – LAB 12]

130

DBS LAB MANUAL REFERENCES

REFERENCES

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, “Database System

Concepts”, (6e), McGraw Hill Education (India) Edition, 2013.

2. Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”,

Addison-Wesley Publications, 2013.

