Compare commits
10 commits
4a7538f18d
...
7847547baf
Author | SHA1 | Date | |
---|---|---|---|
![]() |
7847547baf | ||
![]() |
7d648dd312 | ||
![]() |
d53e55ce7c | ||
![]() |
31ebd76c78 | ||
![]() |
8eead06307 | ||
![]() |
5a67380e0c | ||
![]() |
2bd895d3bf | ||
![]() |
4c49bd8d7d | ||
![]() |
f50567be0d | ||
![]() |
1514e4d972 |
7 changed files with 636 additions and 263 deletions
65
.gitignore
vendored
Normal file
65
.gitignore
vendored
Normal file
|
@ -0,0 +1,65 @@
|
|||
### MacOS System Files ###
|
||||
.DS_Store
|
||||
.DS_Store?
|
||||
._*
|
||||
.Spotlight-V100
|
||||
.Trashes
|
||||
ehthumbs.db
|
||||
Thumbs.db
|
||||
.AppleDouble
|
||||
.LSOverride
|
||||
Icon
|
||||
.DocumentRevisions-V100
|
||||
.fseventsd
|
||||
.TemporaryItems
|
||||
.VolumeIcon.icns
|
||||
|
||||
### Obsidian ###
|
||||
.obsidian/
|
||||
|
||||
### IDEs and Editors ###
|
||||
.idea/
|
||||
.vscode/
|
||||
*.swp
|
||||
*.swo
|
||||
*~
|
||||
|
||||
### Node ###
|
||||
node_modules/
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
||||
|
||||
### Python ###
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
*.so
|
||||
.Python
|
||||
env/
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
|
||||
### Java ###
|
||||
*.class
|
||||
*.log
|
||||
*.jar
|
||||
*.war
|
||||
*.nar
|
||||
*.ear
|
||||
*.zip
|
||||
*.tar.gz
|
||||
*.rar
|
|
@ -1 +1,176 @@
|
|||
## Week 7 - DBMS Lab - PL SQL & Triggers
|
||||
## Week 7 - DBMS Lab - PL SQL & Triggers
|
||||
|
||||
### Q1. Generate a trigger displaying driver information, on participating in an accident.
|
||||
|
||||
Trigger:
|
||||
```sql
|
||||
CREATE OR REPLACE TRIGGER trg_display_driver_info
|
||||
AFTER INSERT ON participated
|
||||
FOR EACH ROW
|
||||
DECLARE
|
||||
v_driver_name VARCHAR2(100);
|
||||
v_driver_address VARCHAR2(255);
|
||||
BEGIN
|
||||
SELECT NAME, ADDRESS
|
||||
INTO v_driver_name, v_driver_address
|
||||
FROM person
|
||||
WHERE DRIVER_ID# = :NEW.DRIVER_ID#;
|
||||
|
||||
DBMS_OUTPUT.PUT_LINE('Driver ID: ' || :NEW.DRIVER_ID#);
|
||||
DBMS_OUTPUT.PUT_LINE('Driver Name: ' || v_driver_name);
|
||||
DBMS_OUTPUT.PUT_LINE('Driver Address: ' || v_driver_address);
|
||||
DBMS_OUTPUT.PUT_LINE('Car Registration Number: ' || :NEW.REGNO);
|
||||
DBMS_OUTPUT.PUT_LINE('Report Number: ' || :NEW.REPORT_NUMBER);
|
||||
DBMS_OUTPUT.PUT_LINE('Damage Amount: ' || :NEW.DAMAGE_AMOUNT);
|
||||
END;
|
||||
/
|
||||
```
|
||||
|
||||
Demo:
|
||||
```sql
|
||||
SQL> INSERT INTO participated (DRIVER_ID#, REGNO, REPORT_NUMBER, DAMAGE_AMOUNT)
|
||||
2 VALUES (1235, 'EFGH2001', 3, 5000);
|
||||
Driver ID: 1235
|
||||
Driver Name: Rohit
|
||||
Driver Address: Banglalore India
|
||||
Car Registration Number: EFGH2001
|
||||
Report Number: 3
|
||||
Damage Amount: 5000
|
||||
Driver_id: 1235 Name: Rohit Address: Banglalore India
|
||||
|
||||
1 row created.
|
||||
```
|
||||
|
||||
### Q2. Create a trigger that updates a `total_damage` column in the `accident` table whenever a new entry is added to or removed from the participated field.`
|
||||
Trigger:
|
||||
```SQL
|
||||
SQL> CREATE OR REPLACE TRIGGER update_total_damage
|
||||
2 AFTER
|
||||
3 INSERT OR DELETE ON PARTICIPATED
|
||||
4 BEGIN
|
||||
5 UPDATE ACCIDENT
|
||||
6 SET
|
||||
7 total_damage = (
|
||||
8 SELECT
|
||||
9 SUM(damage_amount)
|
||||
10 FROM PARTICIPATED p
|
||||
11 WHERE
|
||||
12 p.report_number = ACCIDENT.report_number
|
||||
13 );
|
||||
14 END;
|
||||
15 /
|
||||
|
||||
Trigger created.
|
||||
```
|
||||
Adding an identifier `total_damage`:
|
||||
```sql
|
||||
SQL> ALTER TABLE ACCIDENT ADD total_damage NUMBER;
|
||||
```
|
||||
Test case with Insertion:
|
||||
```sql
|
||||
SQL> INSERT INTO
|
||||
PARTICIPATED (driver_id#, regno, report_number, damage_amount)
|
||||
VALUES
|
||||
('1235', 'EFGH2001', 1, 5000);
|
||||
Driver_id: 1235 Name: Rohit Address: Banglalore India
|
||||
|
||||
1 row created.
|
||||
|
||||
SQL> SELECT
|
||||
report_number,
|
||||
total_damage
|
||||
FROM ACCIDENT
|
||||
WHERE
|
||||
report_number = 1;
|
||||
|
||||
REPORT_NUMBER TOTAL_DAMAGE
|
||||
------------- ------------
|
||||
1 15000
|
||||
```
|
||||
Test case with Deletion:
|
||||
```sql
|
||||
SQL> DELETE FROM PARTICIPATED
|
||||
WHERE
|
||||
driver_id# = '1235'
|
||||
AND regno = 'EFGH2001'
|
||||
AND report_number = 1;
|
||||
|
||||
1 row deleted.
|
||||
|
||||
SQL> SELECT
|
||||
report_number,
|
||||
total_damage
|
||||
FROM ACCIDENT
|
||||
WHERE
|
||||
report_number = 1;
|
||||
|
||||
REPORT_NUMBER TOTAL_DAMAGE
|
||||
------------- ------------
|
||||
1 10000
|
||||
```
|
||||
|
||||
|
||||
### Q3. List cars involved in accidents with cumulative damage exceeding a specific amount.
|
||||
|
||||
Checking for damage amount > 10000, we have
|
||||
```SQL
|
||||
SQL> SELECT
|
||||
p.driver_id#,
|
||||
o.regno,
|
||||
SUM(pa.damage_amount) AS total_damage
|
||||
FROM
|
||||
PARTICIPATED pa
|
||||
JOIN
|
||||
OWNS o ON pa.driver_id# = o.driver_id#
|
||||
JOIN
|
||||
PERSON p ON o.driver_id# = p.driver_id#
|
||||
GROUP BY
|
||||
p.driver_id#, o.regno
|
||||
HAVING
|
||||
SUM(pa.damage_amount) > 10000;
|
||||
|
||||
DRIVER_ID# REGNO TOTAL_DAMAGE
|
||||
------------------------------ -------------------- ------------
|
||||
1238 HFSP5601 26500
|
||||
```
|
||||
|
||||
### Q4. Identify cars that have been involved in more than one accident and calculate the total damage for each car.
|
||||
|
||||
```SQL
|
||||
SQL> SELECT
|
||||
o.regno,
|
||||
COUNT(DISTINCT pa.report_number) AS accident_count,
|
||||
SUM(pa.damage_amount) AS total_damage
|
||||
FROM
|
||||
PARTICIPATED pa
|
||||
JOIN
|
||||
OWNS o ON pa.driver_id# = o.driver_id#
|
||||
GROUP BY
|
||||
o.regno
|
||||
HAVING
|
||||
COUNT(DISTINCT pa.report_number) > 1;
|
||||
|
||||
REGNO ACCIDENT_COUNT TOTAL_DAMAGE
|
||||
-------------------- -------------- ------------
|
||||
HFSP5601 2 26500
|
||||
```
|
||||
|
||||
### Q5. Calculate the average damage amount for accidents at each location.
|
||||
```sql
|
||||
SQL> SELECT
|
||||
a.location,
|
||||
AVG(pa.damage_amount) AS average_damage
|
||||
FROM
|
||||
ACCIDENT a
|
||||
JOIN
|
||||
PARTICIPATED pa ON a.report_number = pa.report_number
|
||||
GROUP BY
|
||||
a.location;
|
||||
|
||||
LOCATION AVERAGE_DAMAGE
|
||||
-------------------------------------------------- --------------
|
||||
karnataka India 25000
|
||||
Delhi India 10000
|
||||
India 2575
|
||||
Gujrat India 1500
|
||||
```
|
BIN
OS/C/Week6/menu
Executable file
BIN
OS/C/Week6/menu
Executable file
Binary file not shown.
|
@ -4,90 +4,87 @@
|
|||
|
||||
# define MAX 4
|
||||
|
||||
typedef struct {
|
||||
char pid[5]; // Process ID (string)
|
||||
int at; // Arrival Time
|
||||
int bt; // Burst Time
|
||||
int priority; // Priority (lower value = higher priority)
|
||||
int ct; // Completion Time
|
||||
int tat; // Turnaround Time
|
||||
int wt; // Waiting Time
|
||||
int rt; // Response Time
|
||||
int remaining_bt; // Remaining Burst Time (for preemptive sjf)
|
||||
int is_completed; // completion flag
|
||||
} Process;
|
||||
typedef struct {
|
||||
char pid[5]; // Process ID (string)
|
||||
int at; // Arrival Time
|
||||
int bt; // Burst Time
|
||||
int priority; // Priority (lower value = higher priority)
|
||||
int ct; // Completion Time
|
||||
int tat; // Turnaround Time
|
||||
int wt; // Waiting Time
|
||||
int rt; // Response Time
|
||||
int remaining_bt; // Remaining Burst Time (for preemptive sjf)
|
||||
int is_completed; // completion flag
|
||||
} Process;
|
||||
|
||||
void swap(Process *a, Process *b) {
|
||||
Process temp = *a;
|
||||
*a = *b;
|
||||
*b = temp;
|
||||
}
|
||||
void swap(Process *a, Process *b) {
|
||||
Process temp = *a;
|
||||
*a = *b;
|
||||
*b = temp;
|
||||
}
|
||||
|
||||
// Function to calculate Completion Time, Turnaround Time, and Waiting Time
|
||||
void calculate_times(Process processes[], int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
processes[i].tat = processes[i].ct - processes[i].at;
|
||||
processes[i].wt = processes[i].tat - processes[i].bt;
|
||||
}
|
||||
}
|
||||
// Function to calculate Completion Time, Turnaround Time, and Waiting Time
|
||||
void calculate_times(Process processes[], int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
processes[i].tat = processes[i].ct - processes[i].at;
|
||||
processes[i].wt = processes[i].tat - processes[i].bt;
|
||||
}
|
||||
}
|
||||
|
||||
// Function to calculate average times
|
||||
void calculate_averages(Process processes[], int n, float *avg_ct,
|
||||
float *avg_tat, float *avg_wt, float *avg_rt) {
|
||||
*avg_ct = 0;
|
||||
*avg_tat = 0;
|
||||
*avg_wt = 0;
|
||||
*avg_rt = 0;
|
||||
// Function to calculate average times
|
||||
void calculate_averages(Process processes[], int n, float *avg_ct,
|
||||
float *avg_tat, float *avg_wt, float *avg_rt) {
|
||||
*avg_ct = 0;
|
||||
*avg_tat = 0;
|
||||
*avg_wt = 0;
|
||||
*avg_rt = 0;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
*avg_ct += processes[i].ct;
|
||||
*avg_tat += processes[i].tat;
|
||||
*avg_wt += processes[i].wt;
|
||||
*avg_rt += processes[i].rt;
|
||||
}
|
||||
for (int i = 0; i < n; i++) {
|
||||
*avg_ct += processes[i].ct;
|
||||
*avg_tat += processes[i].tat;
|
||||
*avg_wt += processes[i].wt;
|
||||
*avg_rt += processes[i].rt;
|
||||
}
|
||||
|
||||
*avg_ct /= n;
|
||||
*avg_tat /= n;
|
||||
*avg_wt /= n;
|
||||
*avg_rt /= n;
|
||||
}
|
||||
*avg_ct /= n;
|
||||
*avg_tat /= n;
|
||||
*avg_wt /= n;
|
||||
*avg_rt /= n;
|
||||
}
|
||||
|
||||
// Function to display the Gantt chart
|
||||
void display_gantt_chart(Process processes[], int n, int timeline[]) {
|
||||
printf("\nGantt Chart:\n");
|
||||
printf("-----------------------------------------------------------\n");
|
||||
for (int i = 0; i <= timeline[n - 1]; i++) {
|
||||
printf("%-3d", i);
|
||||
}
|
||||
// Function to display the Gantt chart
|
||||
void display_gantt_chart(Process processes[], int n, int timeline[], int timeline_index) {
|
||||
printf("\nGantt Chart:\n");
|
||||
printf("-----------------------------------------------------------\n");
|
||||
int last_process = -1;
|
||||
for(int i = 0; i < timeline_index; i++) {
|
||||
if(timeline[i] != last_process) {
|
||||
printf("%s ", processes[timeline[i]].pid);
|
||||
last_process = timeline[i];
|
||||
}
|
||||
}
|
||||
printf("\n-----------------------------------------------------------\n");
|
||||
}
|
||||
|
||||
printf("\n-----------------------------------------------------------\n");
|
||||
// Function to display the process table
|
||||
void display_table(Process processes[], int n) {
|
||||
printf("--------------------------------------------------------------------"
|
||||
"------\n");
|
||||
printf("| PID | AT | BT | CT | TAT | WT | RT |\n");
|
||||
printf("--------------------------------------------------------------------"
|
||||
"------\n");
|
||||
for (int i = 0; i < n; i++) {
|
||||
printf("| %-5s | %-3d | %-3d | %-3d | %-3d | %-3d | %-3d |\n",
|
||||
processes[i].pid, processes[i].at, processes[i].bt,
|
||||
processes[i].ct, processes[i].tat, processes[i].wt,
|
||||
processes[i].rt);
|
||||
}
|
||||
printf("--------------------------------------------------------------------"
|
||||
"------\n");
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
printf("%-3s", processes[i].pid);
|
||||
}
|
||||
|
||||
printf("\n-----------------------------------------------------------\n");
|
||||
}
|
||||
|
||||
// Function to display the process table
|
||||
void display_table(Process processes[], int n) {
|
||||
printf("--------------------------------------------------------------------"
|
||||
"------\n");
|
||||
printf("| PID | AT | BT | CT | TAT | WT | RT |\n");
|
||||
printf("--------------------------------------------------------------------"
|
||||
"------\n");
|
||||
for (int i = 0; i < n; i++) {
|
||||
printf("| %-5s | %-3d | %-3d | %-3d | %-3d | %-3d | %-3d |\n",
|
||||
processes[i].pid, processes[i].at, processes[i].bt,
|
||||
processes[i].ct, processes[i].tat, processes[i].wt,
|
||||
processes[i].rt);
|
||||
}
|
||||
printf("--------------------------------------------------------------------"
|
||||
"------\n");
|
||||
}
|
||||
|
||||
// Preemptive SJF
|
||||
void preemptive_sjf(Process processes[], int n){
|
||||
// Preemptive SJF
|
||||
void preemptive_sjf(Process processes[], int n){
|
||||
|
||||
// process sort by AT
|
||||
for (int i = 0; i < n -1; i++){
|
||||
|
@ -110,13 +107,14 @@
|
|||
int completed = 0;
|
||||
int shortest = -1;
|
||||
|
||||
int *timeline = (int *)malloc((n*2)*sizeof(int));
|
||||
int *timeline = (int *)malloc((n*100)*sizeof(int));
|
||||
if (timeline == NULL) {
|
||||
perror ("MemAlloc Error");
|
||||
return;
|
||||
}
|
||||
|
||||
int timeline_index = 0;
|
||||
int last_process = -1;
|
||||
|
||||
// setting to large values to prevent issues
|
||||
while (completed != n)
|
||||
|
@ -140,248 +138,248 @@
|
|||
processes[shortest].rt = current_time - processes[shortest].at;
|
||||
}
|
||||
|
||||
if(shortest != last_process) {
|
||||
timeline[timeline_index++] = shortest;
|
||||
last_process = shortest;
|
||||
}
|
||||
|
||||
processes[shortest].remaining_bt--;
|
||||
current_time++;
|
||||
current_time++;
|
||||
|
||||
|
||||
if (processes[shortest].remaining_bt == 0) {
|
||||
completed++;
|
||||
processes[shortest].ct = current_time;
|
||||
processes[shortest].is_completed = 1;
|
||||
}
|
||||
|
||||
timeline[timeline_index++] = current_time;
|
||||
if (processes[shortest].remaining_bt == 0) {
|
||||
completed++;
|
||||
processes[shortest].ct = current_time;
|
||||
processes[shortest].is_completed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
calculate_times(processes, n);
|
||||
|
||||
float avg_ct, avg_tat, avg_wt, avg_rt;
|
||||
calculate_averages(processes, n, &avg_ct, &avg_tat, &avg_wt, &avg_rt);
|
||||
float avg_ct, avg_tat, avg_wt, avg_rt;
|
||||
calculate_averages(processes, n, &avg_ct, &avg_tat, &avg_wt, &avg_rt);
|
||||
|
||||
|
||||
printf("\nPreemptive SJF Scheduling:\n");
|
||||
display_table(processes, n);
|
||||
printf("\nPreemptive SJF Scheduling:\n");
|
||||
display_table(processes, n);
|
||||
|
||||
|
||||
printf("\nAverage Completion Time: %.2f\n", avg_ct);
|
||||
printf("Average Turnaround Time: %.2f\n", avg_tat);
|
||||
printf("Average Waiting Time: %.2f\n", avg_wt);
|
||||
printf("Average Response Time: %.2f\n", avg_rt);
|
||||
|
||||
|
||||
display_gantt_chart(processes, n, timeline);
|
||||
free(timeline);
|
||||
}
|
||||
|
||||
void round_robin(Process processes[], int n, int quantum) {
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
processes[i].remaining_bt = processes[i].bt;
|
||||
processes[i].rt = -1;
|
||||
processes[i].is_completed = 0;
|
||||
}
|
||||
|
||||
|
||||
int current_time = 0;
|
||||
int completed = 0;
|
||||
int i = 0;
|
||||
int *timeline = (int *)malloc((n * 2) * sizeof(int)); // memory for timeline
|
||||
|
||||
if (timeline == NULL) {
|
||||
perror("Failed to allocate memory for timeline");
|
||||
return;
|
||||
}
|
||||
|
||||
int timeline_index = 0;
|
||||
|
||||
|
||||
while (completed != n) {
|
||||
if (processes[i].remaining_bt > 0 && processes[i].at <= current_time) {
|
||||
if (processes[i].rt == -1) {
|
||||
processes[i].rt = current_time - processes[i].at;
|
||||
}
|
||||
|
||||
int execute_time = (processes[i].remaining_bt > quantum) ? quantum : processes[i].remaining_bt; processes[i].remaining_bt -= execute_time; current_time += execute_time;
|
||||
|
||||
if (processes[i].remaining_bt == 0) {
|
||||
completed++;
|
||||
processes[i].ct = current_time;
|
||||
processes[i].is_completed = 1;
|
||||
}
|
||||
|
||||
timeline[timeline_index++] = current_time;
|
||||
|
||||
} else if (processes[i].at > current_time) {
|
||||
current_time++; // if process hasn't arrived, time is incremented (to prevent a stall)
|
||||
}
|
||||
|
||||
|
||||
i = (i + 1) % n;
|
||||
if (current_time > 1000) break;
|
||||
}
|
||||
|
||||
|
||||
calculate_times(processes, n);
|
||||
|
||||
|
||||
float avg_ct, avg_tat, avg_wt, avg_rt;
|
||||
calculate_averages(processes, n, &avg_ct, &avg_tat, &avg_wt, &avg_rt);
|
||||
|
||||
|
||||
printf("\nRound Robin Scheduling (Quantum = %d):\n", quantum);
|
||||
display_table(processes, n);
|
||||
|
||||
|
||||
printf("\nAverage Completion Time: %.2f\n", avg_ct);
|
||||
printf("Average Turnaround Time: %.2f\n", avg_tat);
|
||||
printf("\nAverage Completion Time: %.2f\n", avg_ct);
|
||||
printf("Average Turnaround Time: %.2f\n", avg_tat);
|
||||
printf("Average Waiting Time: %.2f\n", avg_wt);
|
||||
printf("Average Response Time: %.2f\n", avg_rt);
|
||||
|
||||
|
||||
display_gantt_chart(processes, n, timeline);
|
||||
free(timeline); // Free memory
|
||||
}
|
||||
display_gantt_chart(processes, n, timeline, timeline_index);
|
||||
free(timeline);
|
||||
}
|
||||
|
||||
void round_robin(Process processes[], int n, int quantum) {
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
processes[i].remaining_bt = processes[i].bt;
|
||||
processes[i].rt = -1;
|
||||
processes[i].is_completed = 0;
|
||||
}
|
||||
|
||||
|
||||
void non_preemptive_priority(Process processes[], int n) {
|
||||
for (int i = 0; i < n - 1; i++) {
|
||||
for (int j = 0; j < n - i - 1; j++) {
|
||||
if (processes[j].at > processes[j + 1].at) {
|
||||
swap(&processes[j], &processes[j + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int current_time = 0;
|
||||
int completed = 0;
|
||||
int *timeline = (int *)malloc((n * 2) * sizeof(int));
|
||||
int current_time = 0;
|
||||
int completed = 0;
|
||||
int i = 0;
|
||||
int *timeline = (int *)malloc((n * 100) * sizeof(int));
|
||||
|
||||
if (timeline == NULL) {
|
||||
perror("Failed to allocate memory for timeline");
|
||||
return;
|
||||
}
|
||||
perror("Failed to allocate memory for timeline");
|
||||
return;
|
||||
}
|
||||
|
||||
int timeline_index = 0;
|
||||
int last_process = -1;
|
||||
|
||||
while (completed != n) {
|
||||
int highest_priority = -1;
|
||||
int min_priority = 9999; // Large value
|
||||
while (completed != n) {
|
||||
if (processes[i].remaining_bt > 0 && processes[i].at <= current_time) {
|
||||
if (processes[i].rt == -1) {
|
||||
processes[i].rt = current_time - processes[i].at;
|
||||
}
|
||||
|
||||
if(i != last_process) {
|
||||
timeline[timeline_index++] = i;
|
||||
last_process = i;
|
||||
}
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (processes[j].at <= current_time && processes[j].bt > 0 && processes[j].priority < min_priority) {
|
||||
min_priority = processes[j].priority;
|
||||
highest_priority = j;
|
||||
}
|
||||
}
|
||||
int execute_time = (processes[i].remaining_bt > quantum) ? quantum : processes[i].remaining_bt;
|
||||
processes[i].remaining_bt -= execute_time;
|
||||
current_time += execute_time;
|
||||
|
||||
if (highest_priority == -1) {
|
||||
current_time++;
|
||||
continue;
|
||||
}
|
||||
if (processes[i].remaining_bt == 0) {
|
||||
completed++;
|
||||
processes[i].ct = current_time;
|
||||
processes[i].is_completed = 1;
|
||||
}
|
||||
|
||||
if (processes[highest_priority].rt == -1) {
|
||||
processes[highest_priority].rt =
|
||||
current_time - processes[highest_priority].at;
|
||||
}
|
||||
} else if (processes[i].at > current_time) {
|
||||
current_time++;
|
||||
}
|
||||
|
||||
current_time += processes[highest_priority].bt;
|
||||
i = (i + 1) % n;
|
||||
if (current_time > 1000) break;
|
||||
}
|
||||
|
||||
processes[highest_priority].ct = current_time;
|
||||
processes[highest_priority].bt = 0; // Mark completed
|
||||
calculate_times(processes, n);
|
||||
|
||||
completed++;
|
||||
timeline[timeline_index++] = current_time;
|
||||
}
|
||||
float avg_ct, avg_tat, avg_wt, avg_rt;
|
||||
calculate_averages(processes, n, &avg_ct, &avg_tat, &avg_wt, &avg_rt);
|
||||
|
||||
calculate_times(processes, n);
|
||||
printf("\nRound Robin Scheduling (Quantum = %d):\n", quantum);
|
||||
display_table(processes, n);
|
||||
|
||||
float avg_ct, avg_tat, avg_wt, avg_rt;
|
||||
calculate_averages(processes, n, &avg_ct, &avg_tat, &avg_wt, &avg_rt);
|
||||
printf("\nAverage Completion Time: %.2f\n", avg_ct);
|
||||
printf("Average Turnaround Time: %.2f\n", avg_tat);
|
||||
printf("Average Waiting Time: %.2f\n", avg_wt);
|
||||
printf("Average Response Time: %.2f\n", avg_rt);
|
||||
|
||||
printf("\nNon-Preemptive Priority Scheduling:\n");
|
||||
display_table(processes, n);
|
||||
display_gantt_chart(processes, n, timeline, timeline_index);
|
||||
free(timeline);
|
||||
}
|
||||
|
||||
printf("\nAverage Completion Time: %.2f\n", avg_ct);
|
||||
printf("Average Turnaround Time: %.2f\n", avg_tat);
|
||||
printf("Average Waiting Time: %.2f\n", avg_wt);
|
||||
printf("Average Response Time: %.2f\n", avg_rt);
|
||||
void non_preemptive_priority(Process processes[], int n) {
|
||||
for (int i = 0; i < n - 1; i++) {
|
||||
for (int j = 0; j < n - i - 1; j++) {
|
||||
if (processes[j].at > processes[j + 1].at) {
|
||||
swap(&processes[j], &processes[j + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
display_gantt_chart(processes, n, timeline);
|
||||
free(timeline); // Free memory
|
||||
}
|
||||
int current_time = 0;
|
||||
int completed = 0;
|
||||
int *timeline = (int *)malloc((n * 100) * sizeof(int));
|
||||
|
||||
if (timeline == NULL) {
|
||||
perror("Failed to allocate memory for timeline");
|
||||
return;
|
||||
}
|
||||
|
||||
int main() {
|
||||
int n, choice, quantum;
|
||||
int timeline_index = 0;
|
||||
int last_process = -1;
|
||||
|
||||
printf("Enter the number of processes: ");
|
||||
scanf("%d", &n);
|
||||
while (completed != n) {
|
||||
int highest_priority = -1;
|
||||
int min_priority = 9999;
|
||||
|
||||
Process processes[n];
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (processes[j].at <= current_time && processes[j].bt > 0 && processes[j].priority < min_priority) {
|
||||
min_priority = processes[j].priority;
|
||||
highest_priority = j;
|
||||
}
|
||||
}
|
||||
|
||||
// Input process details
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (highest_priority == -1) {
|
||||
current_time++;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (processes[highest_priority].rt == -1) {
|
||||
processes[highest_priority].rt = current_time - processes[highest_priority].at;
|
||||
}
|
||||
|
||||
if(highest_priority != last_process) {
|
||||
timeline[timeline_index++] = highest_priority;
|
||||
last_process = highest_priority;
|
||||
}
|
||||
|
||||
current_time += processes[highest_priority].bt;
|
||||
processes[highest_priority].ct = current_time;
|
||||
processes[highest_priority].bt = 0;
|
||||
completed++;
|
||||
}
|
||||
|
||||
calculate_times(processes, n);
|
||||
|
||||
float avg_ct, avg_tat, avg_wt, avg_rt;
|
||||
calculate_averages(processes, n, &avg_ct, &avg_tat, &avg_wt, &avg_rt);
|
||||
|
||||
printf("\nNon-Preemptive Priority Scheduling:\n");
|
||||
display_table(processes, n);
|
||||
|
||||
printf("\nAverage Completion Time: %.2f\n", avg_ct);
|
||||
printf("Average Turnaround Time: %.2f\n", avg_tat);
|
||||
printf("Average Waiting Time: %.2f\n", avg_wt);
|
||||
printf("Average Response Time: %.2f\n", avg_rt);
|
||||
|
||||
display_gantt_chart(processes, n, timeline, timeline_index);
|
||||
free(timeline);
|
||||
}
|
||||
|
||||
int main() {
|
||||
int n, choice, quantum;
|
||||
|
||||
printf("Enter the number of processes: ");
|
||||
scanf("%d", &n);
|
||||
|
||||
Process processes[n];
|
||||
|
||||
// Input process details
|
||||
for (int i = 0; i < n; i++) {
|
||||
printf("\nEnter details for process %d:\n", i + 1);
|
||||
|
||||
printf("PID: ");
|
||||
scanf("%s", processes[i].pid);
|
||||
|
||||
printf("Arrival Time: ");
|
||||
scanf("%d", &processes[i].at);
|
||||
scanf("%d", &processes[i].at);
|
||||
|
||||
printf("Burst Time: ");
|
||||
scanf("%d", &processes[i].bt);
|
||||
scanf("%d", &processes[i].bt);
|
||||
|
||||
printf("Priority (lower value = higher priority): ");
|
||||
scanf("%d", &processes[i].priority);
|
||||
scanf("%d", &processes[i].priority);
|
||||
|
||||
processes[i].rt = 0; // Initialize response time
|
||||
processes[i].is_completed = 0; // Initialize completion flag
|
||||
}
|
||||
processes[i].is_completed = 0; // Initialize completion flag
|
||||
}
|
||||
|
||||
// Display initial table
|
||||
printf("\nInitial Process Table:\n");
|
||||
printf("-----------------------\n");
|
||||
printf("| PID | AT | BT |\n");
|
||||
printf("-----------------------\n");
|
||||
// Display initial table
|
||||
printf("\nInitial Process Table:\n");
|
||||
printf("-----------------------\n");
|
||||
printf("| PID | AT | BT |\n");
|
||||
printf("-----------------------\n");
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
printf("| %-5s | %-3d | %-3d |\n", processes[i].pid, processes[i].at, processes[i].bt);
|
||||
}
|
||||
for (int i = 0; i < n; i++) {
|
||||
printf("| %-5s | %-3d | %-3d |\n", processes[i].pid, processes[i].at, processes[i].bt);
|
||||
}
|
||||
|
||||
printf("-----------------------\n");
|
||||
|
||||
// Algorithm Selection Menu with Loop and Exit
|
||||
while (1) {
|
||||
printf("\nChoose a scheduling algorithm:\n");
|
||||
printf("1. Preemptive SJF\n");
|
||||
printf("2. Round Robin\n");
|
||||
printf("3. Non-Preemptive Priority\n");
|
||||
printf("4. Exit\n");
|
||||
printf("Enter your choice: ");
|
||||
// Algorithm Selection Menu with Loop and Exit
|
||||
while (1) {
|
||||
printf("\nChoose a scheduling algorithm:\n");
|
||||
printf("1. Preemptive SJF\n");
|
||||
printf("2. Round Robin\n");
|
||||
printf("3. Non-Preemptive Priority\n");
|
||||
printf("4. Exit\n");
|
||||
printf("Enter your choice: ");
|
||||
|
||||
scanf("%d", &choice);
|
||||
|
||||
switch (choice) {
|
||||
case 1:
|
||||
preemptive_sjf(processes, n);
|
||||
break;
|
||||
case 2:
|
||||
printf("Enter the time quantum: ");
|
||||
scanf("%d", &quantum);
|
||||
round_robin(processes, n, quantum);
|
||||
break;
|
||||
case 3:
|
||||
non_preemptive_priority(processes, n);
|
||||
break;
|
||||
case 4:
|
||||
printf("Exiting program.\n");
|
||||
exit(0);
|
||||
default:
|
||||
printf("Invalid choice. Please try again.\n");
|
||||
}
|
||||
}
|
||||
case 1:
|
||||
preemptive_sjf(processes, n);
|
||||
break;
|
||||
case 2:
|
||||
printf("Enter the time quantum: ");
|
||||
scanf("%d", &quantum);
|
||||
round_robin(processes, n, quantum);
|
||||
break;
|
||||
case 3:
|
||||
non_preemptive_priority(processes, n);
|
||||
break;
|
||||
case 4:
|
||||
printf("Exiting program.\n");
|
||||
exit(0);
|
||||
default:
|
||||
printf("Invalid choice. Please try again.\n");
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
// Write a C program to solve the Dining-Philosophers problem.
|
0
OS/C/Week8/aq1.c
Normal file
0
OS/C/Week8/aq1.c
Normal file
134
OS/C/Week8/q1.c
Normal file
134
OS/C/Week8/q1.c
Normal file
|
@ -0,0 +1,134 @@
|
|||
// Develop a program to simulate banker’s algorithm. (Consider safety and resource-request algorithms)
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#define MAX_PROCESSES 10
|
||||
#define MAX_RESOURCES 10
|
||||
|
||||
int processes, resources;
|
||||
int available[MAX_RESOURCES];
|
||||
int maximum[MAX_PROCESSES][MAX_RESOURCES];
|
||||
int allocation[MAX_PROCESSES][MAX_RESOURCES];
|
||||
int need[MAX_PROCESSES][MAX_RESOURCES];
|
||||
|
||||
int safeSequence[MAX_PROCESSES];
|
||||
|
||||
void initialize() {
|
||||
printf("Enter number of processes: ");
|
||||
scanf("%d", &processes);
|
||||
|
||||
printf("Enter number of resources: ");
|
||||
scanf("%d", &resources);
|
||||
|
||||
printf("\nEnter available resources:\n");
|
||||
for(int i=0; i<resources; i++) {
|
||||
scanf("%d", &available[i]);
|
||||
}
|
||||
|
||||
printf("\nEnter maximum matrix:\n");
|
||||
for(int i=0; i<processes; i++) {
|
||||
for(int j=0; j<resources; j++) {
|
||||
scanf("%d", &maximum[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
printf("\nEnter allocation matrix:\n");
|
||||
for(int i=0; i<processes; i++) {
|
||||
for(int j=0; j<resources; j++) {
|
||||
scanf("%d", &allocation[i][j]);
|
||||
need[i][j] = maximum[i][j] - allocation[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int isSafe() {
|
||||
int work[MAX_RESOURCES];
|
||||
int finish[MAX_PROCESSES] = {0};
|
||||
int count = 0;
|
||||
|
||||
for(int i=0; i<resources; i++)
|
||||
work[i] = available[i];
|
||||
|
||||
while(count < processes) {
|
||||
int found = 0;
|
||||
for(int p=0; p<processes; p++) {
|
||||
if(!finish[p]) {
|
||||
int j;
|
||||
for(j=0; j<resources; j++) {
|
||||
if(need[p][j] > work[j])
|
||||
break;
|
||||
}
|
||||
if(j == resources) {
|
||||
for(int k=0; k<resources; k++)
|
||||
work[k] += allocation[p][k];
|
||||
safeSequence[count] = p;
|
||||
finish[p] = 1;
|
||||
count++;
|
||||
found = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(!found) return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void resourceRequest(int process) {
|
||||
int request[MAX_RESOURCES];
|
||||
|
||||
printf("\nEnter resource request for process %d:\n", process);
|
||||
for(int i=0; i<resources; i++) {
|
||||
scanf("%d", &request[i]);
|
||||
}
|
||||
|
||||
// Check if request is valid
|
||||
for(int i=0; i<resources; i++) {
|
||||
if(request[i] > need[process][i]) {
|
||||
printf("Error: Request exceeds maximum claim\n");
|
||||
return;
|
||||
}
|
||||
if(request[i] > available[i]) {
|
||||
printf("Error: Resources not available\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Try to allocate
|
||||
for(int i=0; i<resources; i++) {
|
||||
available[i] -= request[i];
|
||||
allocation[process][i] += request[i];
|
||||
need[process][i] -= request[i];
|
||||
}
|
||||
|
||||
if(isSafe()) {
|
||||
printf("Request granted\n");
|
||||
} else {
|
||||
printf("Request denied - unsafe state\n");
|
||||
// Rollback
|
||||
for(int i=0; i<resources; i++) {
|
||||
available[i] += request[i];
|
||||
allocation[process][i] -= request[i];
|
||||
need[process][i] += request[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
initialize();
|
||||
|
||||
if(isSafe()) {
|
||||
printf("\nSystem is in safe state.\nSafe sequence: ");
|
||||
for(int i=0; i<processes; i++)
|
||||
printf("P%d ", safeSequence[i]);
|
||||
printf("\n");
|
||||
|
||||
int process;
|
||||
printf("\nEnter process number (0-%d) to request resources: ", processes-1);
|
||||
scanf("%d", &process);
|
||||
resourceRequest(process);
|
||||
} else {
|
||||
printf("\nSystem is not in safe state!\n");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Add table
Reference in a new issue