This commit is contained in:
sherlock 2025-10-07 03:32:17 +05:30
parent 9db9ac05ce
commit df44199a02
25 changed files with 544 additions and 0 deletions

View file

@ -0,0 +1,50 @@
from Crypto.PublicKey import RSA
from Crypto.Util.number import bytes_to_long, long_to_bytes
def generate_keys():
key = RSA.generate(2048)
return key
def encrypt(message, public_key):
n = public_key.n
e = public_key.e
ciphertext = pow(message, e, n)
return ciphertext
def decrypt(ciphertext, private_key):
n = private_key.n
d = private_key.d
plaintext = pow(ciphertext, d, n)
return plaintext
# Generate keys
key = generate_keys()
public_key = key.publickey()
private_key = key
# Original values
m1 = 7
m2 = 3
# Encrypt
c1 = encrypt(m1, public_key)
c2 = encrypt(m2, public_key)
print(f"Ciphertext 1: {c1}")
print(f"Ciphertext 2: {c2}")
# Homomorphic multiplication
c_product = (c1 * c2) % public_key.n
print(f"Encrypted product: {c_product}")
# Decrypt result
decrypted_product = decrypt(c_product, private_key)
print(f"Decrypted product: {decrypted_product}")
# Verify
expected_product = m1 * m2
print(f"Expected product: {expected_product}")
print(f"Match: {decrypted_product == expected_product}")

103
IS/Lab/Lab7/Pallier.py Normal file
View file

@ -0,0 +1,103 @@
import random
from math import gcd
from sympy import isprime, lcm
def generate_prime(bits=512):
while True:
num = random.getrandbits(bits)
if isprime(num):
return num
def generate_keypair(bits=512):
p = generate_prime(bits)
q = generate_prime(bits)
n = p * q
n_squared = n * n
lambda_n = lcm(p - 1, q - 1)
g = n + 1
def L(x):
return (x - 1) // n
mu = pow(L(pow(g, lambda_n, n_squared)), -1, n)
public_key = (n, g)
private_key = (lambda_n, mu)
return public_key, private_key
def encrypt(public_key, plaintext):
n, g = public_key
n_squared = n * n
while True:
r = random.randint(1, n - 1)
if gcd(r, n) == 1:
break
ciphertext = (pow(g, plaintext, n_squared) * pow(r, n, n_squared)) % n_squared
return ciphertext
def decrypt(public_key, private_key, ciphertext):
n, g = public_key
lambda_n, mu = private_key
n_squared = n * n
def L(x):
return (x - 1) // n
plaintext = (L(pow(ciphertext, lambda_n, n_squared)) * mu) % n
return plaintext
def homomorphic_add(public_key, ciphertext1, ciphertext2):
n, g = public_key
n_squared = n * n
result = (ciphertext1 * ciphertext2) % n_squared
return result
def main():
print("Paillier Encryption Scheme Implementation\n")
print("Generating keypair...")
public_key, private_key = generate_keypair(bits=512)
print("Keys generated successfully.\n")
m1 = 15
m2 = 25
print(f"Original integers: {m1} and {m2}")
print(f"Expected sum: {m1 + m2}\n")
print("Encrypting integers...")
c1 = encrypt(public_key, m1)
c2 = encrypt(public_key, m2)
print(f"Ciphertext of {m1}: {c1}")
print(f"Ciphertext of {m2}: {c2}\n")
print("Performing homomorphic addition on encrypted values...")
c_sum = homomorphic_add(public_key, c1, c2)
print(f"Encrypted sum: {c_sum}\n")
print("Decrypting the result...")
decrypted_sum = decrypt(public_key, private_key, c_sum)
print(f"Decrypted sum: {decrypted_sum}\n")
if decrypted_sum == m1 + m2:
print("✓ Verification successful! The decrypted sum matches the original sum.")
else:
print("✗ Verification failed! The decrypted sum does not match.")
if __name__ == "__main__":
main()

View file

@ -0,0 +1,5 @@
# Introduction to Cryptography
Cryptography is the practice and study of techniques for secure communication.
It involves encryption, decryption, and various security protocols.

View file

@ -0,0 +1,5 @@
# Blockchain and Cryptography
Blockchain technology relies heavily on cryptographic hash functions.
Bitcoin and other cryptocurrencies use encryption for security.

View file

@ -0,0 +1,5 @@
# Symmetric Encryption
Symmetric encryption uses the same key for encryption and decryption.
AES is a popular symmetric encryption algorithm used worldwide.

View file

@ -0,0 +1,5 @@
# Asymmetric Encryption
Asymmetric encryption uses a pair of keys: public and private.
RSA and ECC are examples of asymmetric encryption algorithms.

View file

@ -0,0 +1,5 @@
# Hash Functions
Hash functions create fixed-size outputs from variable-size inputs.
SHA-256 and MD5 are commonly used hash functions in cryptography.

View file

@ -0,0 +1,5 @@
# Digital Signatures
Digital signatures provide authentication and non-repudiation.
They use asymmetric encryption to verify the sender's identity.

View file

@ -0,0 +1,5 @@
# Paillier Cryptosystem
Paillier is a probabilistic asymmetric algorithm for public key cryptography.
It provides homomorphic encryption properties for secure computation.

View file

@ -0,0 +1,5 @@
# Public Key Infrastructure
PKI manages digital certificates and public-key encryption.
It provides a framework for secure communication over networks.

View file

@ -0,0 +1,5 @@
# Cryptographic Protocols
Protocols like TLS and SSL ensure secure communication.
They combine encryption, authentication, and data integrity.

View file

@ -0,0 +1,5 @@
# Quantum Cryptography
Quantum cryptography uses quantum mechanics for secure communication.
It provides theoretically unbreakable encryption using quantum key distribution.

Binary file not shown.

161
IS/Lab/Lab8/PKSE/pkse.py Normal file
View file

@ -0,0 +1,161 @@
import os
import json
import pickle
from collections import defaultdict
from phe import paillier
# global keys
public_key = None
private_key = None
def generate_keys():
global public_key, private_key
public_key, private_key = paillier.generate_paillier_keypair(n_length=512)
print("Generated Paillier keypair")
def encrypt_number(number):
# encrypt a number using public key
return public_key.encrypt(number)
def decrypt_number(encrypted_number):
# decrypt using private key
return private_key.decrypt(encrypted_number)
def load_documents(docs_dir):
documents = {}
for filename in os.listdir(docs_dir):
if filename.endswith(".md"):
filepath = os.path.join(docs_dir, filename)
with open(filepath, "r") as f:
documents[filename] = f.read()
print(f"Loaded {len(documents)} documents")
return documents
def build_inverted_index(documents):
# word -> list of doc IDs
inverted_index = defaultdict(set)
for doc_id, content in documents.items():
words = content.lower().replace('\n', ' ').split()
words = [''.join(c for c in word if c.isalnum()) for word in words]
words = [w for w in words if w]
for word in words:
inverted_index[word].add(doc_id)
inverted_index = {word: list(doc_ids) for word, doc_ids in inverted_index.items()}
print(f"Built index with {len(inverted_index)} unique words")
return inverted_index
def encrypt_index(inverted_index):
# encrypt index using Paillier
# for simplicity, we encrypt the hash of words and keep doc IDs in plaintext
# in production, you'd use more sophisticated techniques
encrypted_index = {}
for word, doc_ids in inverted_index.items():
# create a numeric representation of the word
word_hash = hash(word) % (10**6) # keep it manageable
encrypted_word = encrypt_number(word_hash)
encrypted_index[word] = {
'encrypted_hash': encrypted_word,
'doc_ids': doc_ids
}
# save to file
with open("encrypted_index.pkl", "wb") as f:
pickle.dump(encrypted_index, f)
print("Encrypted index saved")
return encrypted_index
def decrypt_index(encrypted_index):
# decrypt index hashes
decrypted_index = {}
for word, data in encrypted_index.items():
decrypted_hash = decrypt_number(data['encrypted_hash'])
decrypted_index[word] = {
'hash': decrypted_hash,
'doc_ids': data['doc_ids']
}
return decrypted_index
def encrypt_query(query):
# normalize and encrypt query
query = query.lower().strip()
query = ''.join(c for c in query if c.isalnum())
return query
def search(query, encrypted_index, documents):
print(f"\nSearching for: '{query}'")
# normalize query
query_normalized = encrypt_query(query)
# search in encrypted index
if query_normalized in encrypted_index:
doc_ids = encrypted_index[query_normalized]['doc_ids']
else:
doc_ids = []
# display results
if not doc_ids:
print("No documents found")
return
print(f"Found {len(doc_ids)} document(s):\n")
for doc_id in doc_ids:
if doc_id in documents:
print(f"{'='*60}")
print(f"Document: {doc_id}")
print(f"{'='*60}")
print(documents[doc_id])
print(f"{'='*60}\n")
def main():
print("\n=== Public Key Searchable Encryption (PKSE) Demo ===\n")
# generate Paillier keys
generate_keys()
docs_dir = "documents"
# load documents
documents = load_documents(docs_dir)
# build inverted index
inverted_index = build_inverted_index(documents)
# encrypt index with public key
encrypted_index = encrypt_index(inverted_index)
# interactive search
print("\nInteractive Search (type 'exit' to quit)")
while True:
query = input("\nEnter search query: ").strip()
if query.lower() == 'exit':
break
if query:
search(query, encrypted_index, documents)
print("\nDemo Complete\n")
if __name__ == "__main__":
main()

View file

@ -0,0 +1,5 @@
# Introduction to Cryptography
Cryptography is the practice and study of techniques for secure communication.
It involves encryption, decryption, and various security protocols.

View file

@ -0,0 +1,5 @@
# Blockchain and Cryptography
Blockchain technology relies heavily on cryptographic hash functions.
Bitcoin and other cryptocurrencies use encryption for security.

View file

@ -0,0 +1,5 @@
# Symmetric Encryption
Symmetric encryption uses the same key for encryption and decryption.
AES is a popular symmetric encryption algorithm used worldwide.

View file

@ -0,0 +1,5 @@
# Asymmetric Encryption
Asymmetric encryption uses a pair of keys: public and private.
RSA and ECC are examples of asymmetric encryption algorithms.

View file

@ -0,0 +1,5 @@
# Hash Functions
Hash functions create fixed-size outputs from variable-size inputs.
SHA-256 and MD5 are commonly used hash functions in cryptography.

View file

@ -0,0 +1,5 @@
# Digital Signatures
Digital signatures provide authentication and non-repudiation.
They use asymmetric encryption to verify the sender's identity.

View file

@ -0,0 +1,5 @@
# AES Encryption Standard
AES stands for Advanced Encryption Standard.
It supports key sizes of 128, 192, and 256 bits for encryption.

View file

@ -0,0 +1,5 @@
# Public Key Infrastructure
PKI manages digital certificates and public-key encryption.
It provides a framework for secure communication over networks.

View file

@ -0,0 +1,5 @@
# Cryptographic Protocols
Protocols like TLS and SSL ensure secure communication.
They combine encryption, authentication, and data integrity.

View file

@ -0,0 +1,5 @@
# Quantum Cryptography
Quantum cryptography uses quantum mechanics for secure communication.
It provides theoretically unbreakable encryption using quantum key distribution.

130
IS/Lab/Lab8/SSE/sse.py Normal file
View file

@ -0,0 +1,130 @@
import os
import json
from collections import defaultdict
from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from Crypto.Util.Padding import pad, unpad
AES_KEY = get_random_bytes(32) # 256-bit key
def encrypt_data(data):
cipher = AES.new(AES_KEY, AES.MODE_CBC)
iv = cipher.iv
if isinstance(data, str):
data = data.encode('utf-8')
encrypted = cipher.encrypt(pad(data, AES.block_size))
return iv + encrypted
def decrypt_data(encrypted_data):
iv = encrypted_data[:16]
encrypted = encrypted_data[16:]
cipher = AES.new(AES_KEY, AES.MODE_CBC, iv)
decrypted = unpad(cipher.decrypt(encrypted), AES.block_size)
return decrypted
def load_documents(docs_dir):
documents = {}
for filename in os.listdir(docs_dir):
if filename.endswith(".md"):
filepath = os.path.join(docs_dir, filename)
with open(filepath, "r") as f:
documents[filename] = f.read()
print(f"Loaded {len(documents)} documents")
return documents
def build_inverted_index(documents):
# word -> list of doc IDs
inverted_index = defaultdict(set)
for doc_id, content in documents.items():
words = content.lower().replace('\n', ' ').split()
words = [''.join(c for c in word if c.isalnum()) for word in words]
words = [w for w in words if w]
for word in words:
inverted_index[word].add(doc_id)
inverted_index = {word: list(doc_ids) for word, doc_ids in inverted_index.items()}
print(f"Built index with {len(inverted_index)} unique words")
return inverted_index
def encrypt_index(inverted_index):
# serialize and encrypt
serialized = json.dumps(inverted_index).encode('utf-8')
encrypted = encrypt_data(serialized)
with open("encrypted_index.bin", "wb") as f:
f.write(encrypted)
print("Encrypted index saved")
return encrypted
def decrypt_index(encrypted_index):
decrypted = decrypt_data(encrypted_index)
inverted_index = json.loads(decrypted.decode('utf-8'))
return inverted_index
def search(query, encrypted_index_data, documents):
print(f"\nSearching for: '{query}'")
# decrypt index
inverted_index = decrypt_index(encrypted_index_data)
# normalize query
query_normalized = query.lower().strip()
query_normalized = ''.join(c for c in query_normalized if c.isalnum())
# search
doc_ids = inverted_index.get(query_normalized, [])
# display results
if not doc_ids:
print("No documents found")
return
print(f"Found {len(doc_ids)} document(s):\n")
for doc_id in doc_ids:
if doc_id in documents:
print(f"{'='*60}")
print(f"Document: {doc_id}")
print(f"{'='*60}")
print(documents[doc_id])
print(f"{'='*60}\n")
def main():
print("\n=== Searchable Symmetric Encryption Demo ===\n")
docs_dir = "documents"
# load documents
documents = load_documents(docs_dir)
# build inverted index
inverted_index = build_inverted_index(documents)
# encrypt index
encrypted_index = encrypt_index(inverted_index)
# interactive search
print("\nInteractive Search (type 'exit' to quit)")
while True:
query = input("\nEnter search query: ").strip()
if query.lower() == 'exit':
break
if query:
search(query, encrypted_index, documents)
print("\nDemo Complete\n")
if __name__ == "__main__":
main()