This commit is contained in:
sherlock 2025-08-28 10:11:40 +05:30
parent c37a788cbd
commit dbabb956d5
16 changed files with 1319 additions and 426 deletions

View file

@ -1,38 +1,100 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
; ========================================================================================
; ASCIItoHEX.asm - ASCII Hexadecimal String to 32-bit Hexadecimal Conversion
; ========================================================================================
; This program converts an ASCII string representing hexadecimal digits into a
; 32-bit hexadecimal value. It processes each ASCII character, converts it to
; its corresponding 4-bit hexadecimal value, and builds the final 32-bit result
; by shifting and ORing each nibble into place.
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA MYCODE, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize pointers to source ASCII string and destination for result
; 2. Initialize result accumulator (R1) to 0
; 3. Process 8 characters (for 32-bit result) in a loop
; 4. For each character:
; a. Load ASCII character (byte)
; b. Check if it's A-F (greater than '9')
; c. Convert ASCII digit to 4-bit hexadecimal value
; d. Shift current result left by 4 bits
; e. OR the new nibble into the result
; 5. Store the final 32-bit hexadecimal value
Reset_Handler
LDR R0, =SRC
LDR R3, =DST
MOV R1, #0
MOV R10, #8
; Step 1: Initialize pointers and variables
; R0 points to the ASCII string source
LDR R0, =SRC ; R0 = address of ASCII string
; R3 points to the destination for the result
LDR R3, =DST ; R3 = address of result storage
; Initialize result accumulator to 0
MOV R1, #0 ; R1 = 0 (will hold the final 32-bit result)
; Set loop counter for 8 characters (8 nibbles = 32 bits)
MOV R10, #8 ; R10 = 8 (number of characters to process)
; Step 2: Main conversion loop
UP
LDRB R2, [R0], #1
CMP R1, #'9'
BCC DOWN
SUB R2, #7
; Load the next ASCII character (byte) from the string
; Post-increment addressing advances R0 to next character
LDRB R2, [R0], #1 ; Load byte from [R0] into R2, then R0 = R0 + 1
; Check if the character is a letter (A-F) or digit (0-9)
; Compare with '9' (ASCII 57) - if R2 <= '9', it's a digit
CMP R1, #'9' ; Compare R1 with ASCII '9' (Note: should be CMP R2, #'9')
BCC DOWN ; If R2 < '9', branch to DOWN (digit 0-9)
; Handle A-F characters (subtract 7 to convert A-F to 10-15)
SUB R2, #7 ; R2 = R2 - 7 (converts 'A' to 10, 'B' to 11, etc.)
DOWN
SUB R2, #0x30
LSL R1, #4
ORR R1, R1, R2
SUBS R10, #1
BNE UP
; Convert ASCII digit to actual hexadecimal value
; Subtract ASCII '0' (0x30) to convert '0'-'9' to 0-9
SUB R2, #0x30 ; R2 = R2 - 0x30 (ASCII to numeric conversion)
STR R1, [R3]
SRC DCB "12AB34CF"
; Shift the current result left by 4 bits to make room for new nibble
LSL R1, #4 ; R1 = R1 << 4 (shift left by 4 bits)
AREA mydata, DATA, READWRITE
; OR the new 4-bit value into the result
ORR R1, R1, R2 ; R1 = R1 | R2 (insert new nibble)
DST DCD 0
; Decrement loop counter and set condition flags
SUBS R10, #1 ; R10 = R10 - 1, set flags for branch condition
END
; Branch back to UP if counter is not zero
BNE UP ; If R10 != 0, continue loop
; Step 3: Store the final result
; Store the 32-bit hexadecimal value to destination
STR R1, [R3] ; Store R1 (final result) to [R3]
; ========================================================================================
; Data Section - ASCII Source String and Result Storage
; ========================================================================================
; SRC contains ASCII string "12AB34CF" (8 characters)
; Each character represents a hexadecimal digit:
; '1','2' -> digits 0-9
; 'A','B','C','F' -> digits 10-15
; The string will be converted to: 0x12AB34CF
SRC DCB "12AB34CF" ; ASCII string to be converted
AREA mydata, DATA, READWRITE ; Define a read-write data section
; DST - Storage for the final 32-bit hexadecimal result
DST DCD 0 ; Space for the converted result
END ; End of the assembly program

View file

@ -1,35 +1,93 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
; ========================================================================================
; BCDtoHEX.asm - Binary Coded Decimal to Hexadecimal Conversion
; ========================================================================================
; This program converts a BCD (Binary Coded Decimal) value to its equivalent
; hexadecimal representation. BCD stores each decimal digit in 4 bits, so a
; byte can represent two decimal digits (00-99). The program extracts each
; BCD digit and converts the entire BCD number to its decimal equivalent.
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA MYCODE, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Load the BCD value from memory (each byte contains two BCD digits)
; 2. Initialize multiplier (R2) to 1 for units place
; 3. Process 3 iterations (for 3 BCD digits in the example)
; 4. In each iteration:
; a. Extract lowest 4 bits (current BCD digit) using AND
; b. Multiply digit by current place value and add to result
; c. Shift BCD value right by 4 bits to get next digit
; d. Multiply place value by 10 for next iteration
; 5. Result (R4) contains the decimal equivalent of the BCD number
Reset_Handler
LDR R0, =SRR
MOV R10, #3
LDR R1, [R0]
MOV R2, #1
; Step 1: Initialize source pointer and load BCD value
; R0 points to the BCD value in memory
LDR R0, =SRR ; R0 = address of BCD value
; Set loop counter for 3 digits (processing 12 bits of the 32-bit value)
MOV R10, #3 ; R10 = 3 (number of BCD digits to process)
; Load the BCD value into R1
LDR R1, [R0] ; R1 = BCD value (e.g., 0x45 = 0100 0101 BCD)
; Initialize multiplier for place value (1 for units, 10 for tens, etc.)
MOV R2, #1 ; R2 = 1 (initial place value multiplier)
; Step 2: Main BCD to decimal conversion loop
UP
AND R3, R1, #0x0F
MLA R4, R2, R3, R4
LSR R1, #4
MOV R5, #0x0A
MUL R2, R5
SUBS R10, #1
BNE UP
; Extract the lowest 4 bits (current BCD digit 0-9)
; AND with 0x0F isolates the least significant nibble
AND R3, R1, #0x0F ; R3 = R1 & 0x0F (extract BCD digit)
; Multiply digit by place value and accumulate result
; MLA (Multiply Accumulate) computes: R4 = R2 * R3 + R4
; This adds the current digit's contribution to the total
MLA R4, R2, R3, R4 ; R4 = (R2 * R3) + R4
; Shift BCD value right by 4 bits to access next digit
LSR R1, #4 ; R1 = R1 >> 4 (move to next BCD digit)
; Prepare multiplier for next place value (multiply by 10)
; This sets up R2 for tens, hundreds, etc. in subsequent iterations
MOV R5, #0x0A ; R5 = 10 (decimal)
MUL R2, R5 ; R2 = R2 * 10 (update place value)
; Decrement loop counter and set condition flags
SUBS R10, #1 ; R10 = R10 - 1, set flags for branch condition
; Branch back to UP if counter is not zero
BNE UP ; If R10 != 0, continue loop
; Step 3: Program termination
; Note: The result is stored in R4 but never saved to memory
STOP
B STOP
B STOP ; Branch to STOP label (infinite loop)
SRR DCD 0x45
; ========================================================================================
; Data Section - BCD Source Value
; ========================================================================================
; SRR contains a BCD value: 0x45
; In BCD format: 0100 0101 = digits 4 and 5
; Decimal equivalent: 4*10 + 5 = 45
; The program converts this to decimal 45 (though result is never stored)
SRR DCD 0x45 ; BCD value to be converted
AREA mydata, DATA, READWRITE
SRC DCD 0x45
AREA mydata, DATA, READWRITE ; Define a read-write data section
END
; SRC - Additional storage (seems unused in this program)
SRC DCD 0x45 ; Duplicate of SRR (possibly for testing)
END ; End of the assembly program

View file

@ -1,41 +1,92 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
; ========================================================================================
; GCD.asm - Greatest Common Divisor Using Euclidean Algorithm
; ========================================================================================
; This program implements the Euclidean algorithm to find the Greatest Common
; Divisor (GCD) of two numbers. The Euclidean algorithm is based on the principle
; that GCD(a, b) = GCD(b, a mod b), and it repeats this process until b = 0.
; When b = 0, the GCD is the value of a.
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA MYCODE, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize two numbers in registers R0 and R1 (48 and 18 in this example)
; 2. Enter the Euclidean algorithm loop:
; a. Compare the two numbers
; b. If equal, GCD is found (algorithm complete)
; c. If R0 > R1, subtract R1 from R0 (replace larger with difference)
; d. If R0 < R1, subtract R0 from R1 (replace larger with difference)
; e. Repeat until both numbers are equal
; 3. Store the GCD result to memory
; 4. Enter infinite loop for program termination
Reset_Handler
MOV r0, #48
MOV r1, #18
; Step 1: Initialize the two numbers for GCD calculation
; R0 and R1 hold the two numbers to find GCD of
MOV r0, #48 ; R0 = 48 (first number)
MOV r1, #18 ; R1 = 18 (second number)
; Step 2: Main Euclidean algorithm loop
GCD_Loop
CMP r0, r1
BEQ GCD_Done
BGT GT_A_B
SUB r1, r1, r0
B GCD_Loop
; Compare the two numbers to determine which is larger
CMP r0, r1 ; Compare R0 and R1, set condition flags
; If R0 == R1, we have found the GCD
BEQ GCD_Done ; Branch to GCD_Done if R0 == R1
; If R0 > R1 (GT condition), subtract R1 from R0
BGT GT_A_B ; Branch to GT_A_B if R0 > R1
; If R0 < R1, subtract R0 from R1 (replace larger with difference)
SUB r1, r1, r0 ; R1 = R1 - R0 (R1 was larger, now smaller)
B GCD_Loop ; Branch back to GCD_Loop
; Handle case where R0 > R1
GT_A_B
SUB r0, r0, r1
B GCD_Loop
SUB r0, r0, r1 ; R0 = R0 - R1 (R0 was larger, now smaller)
B GCD_Loop ; Branch back to GCD_Loop
; Step 3: GCD calculation complete
; When we reach here, R0 == R1 and contains the GCD
GCD_Done
LDR r2, =result
STR r0, [r2]
; Load address of result storage into R2
LDR r2, =result ; R2 = address of result storage
; Store the GCD (in R0) to memory
STR r0, [r2] ; Store GCD value to [R2]
; Step 4: Program termination
; Enter infinite loop to stop program execution
LoopForever
B LoopForever
B LoopForever ; Branch to LoopForever (infinite loop)
ALIGN
ALIGN ; Ensure proper alignment for data section
AREA MYDATA, DATA, READWRITE
numA DCD 48
numB DCD 18
result DCD 0
AREA MYDATA, DATA, READWRITE ; Define a read-write data section
END
; ========================================================================================
; Data Section - Input Numbers and Result Storage
; ========================================================================================
; numA: First number for GCD calculation (48 in this example)
; numB: Second number for GCD calculation (18 in this example)
; GCD(48, 18) = 6, as calculated by the Euclidean algorithm:
; GCD(48, 18) -> GCD(18, 48-18=30) -> GCD(30, 18) -> GCD(18, 30-18=12)
; -> GCD(12, 18) -> GCD(18, 12) -> GCD(12, 18-12=6) -> GCD(6, 12)
; -> GCD(12, 6) -> GCD(6, 12-6=0) -> GCD(6, 0) = 6
numA DCD 48 ; First number for GCD
numB DCD 18 ; Second number for GCD
result DCD 0 ; Storage for the GCD result
END ; End of the assembly program

View file

@ -1,37 +1,102 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
; ========================================================================================
; HEXtoASCII.asm - 32-bit Hexadecimal to ASCII String Conversion
; ========================================================================================
; This program converts a 32-bit hexadecimal value into its ASCII string
; representation. Each 4-bit nibble of the hexadecimal value is converted
; to its corresponding ASCII character ('0'-'9' for digits, 'A'-'F' for
; values 10-15). The result is stored as a sequence of ASCII bytes.
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA MYCODE, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Load the 32-bit hexadecimal value from memory
; 2. Initialize destination pointer for ASCII string storage
; 3. Set loop counter for 8 nibbles (32 bits = 8 nibbles)
; 4. Process each nibble from least significant to most significant:
; a. Extract lowest 4 bits using AND with 0x0F
; b. Check if digit (0-9) or letter (A-F)
; c. Convert to ASCII: add 0x30 for digits, add 0x37 for A-F
; d. Store ASCII character to destination array
; e. Shift original value right by 4 bits for next nibble
; 5. Result is an ASCII string representing the hexadecimal value
Reset_Handler
LDR R0, =SRC
LDR R1, [R0]
LDR R3, =DST
MOV R10, #8
; Step 1: Initialize source and destination pointers
; R0 points to the 32-bit hexadecimal value
LDR R0, =SRC ; R0 = address of hexadecimal value
; Load the hexadecimal value into R1
LDR R1, [R0] ; R1 = 32-bit hexadecimal value (e.g., 0x12AB34CF)
; R3 points to the destination for ASCII string
LDR R3, =DST ; R3 = address of ASCII string storage
; Step 2: Initialize loop counter
; Process 8 nibbles (32 bits / 4 bits per nibble = 8 nibbles)
MOV R10, #8 ; R10 = 8 (number of nibbles to process)
; Step 3: Main conversion loop - process each nibble
UP
AND R2, R1, #0x0F
CMP R2, #09
BCC DOWN
ADD R2, #7
; Extract the lowest 4 bits (current nibble 0-15)
; AND with 0x0F isolates the least significant nibble
AND R2, R1, #0x0F ; R2 = R1 & 0x0F (extract nibble 0-15)
; Check if the nibble represents a digit (0-9) or letter (A-F)
; Compare with 9 (decimal) - values 0-9 are digits, 10-15 are A-F
CMP R2, #09 ; Compare R2 with 9
BCC DOWN ; If R2 <= 9, branch to DOWN (digit)
; Handle A-F characters (add 7 to skip punctuation in ASCII table)
; ASCII: '0'-'9' = 0x30-0x39, 'A'-'F' = 0x41-0x46
; For values 10-15: add 0x30 + 7 = 0x37 to get 'A'-'F'
ADD R2, #7 ; R2 = R2 + 7 (adjust for A-F range)
; Convert nibble to ASCII character
DOWN
ADD R2, #0x30
STR R2, [R3], #4
LSR R1, #4
SUBS R10, #1
BNE UP
; Add ASCII '0' (0x30) to convert nibble to ASCII digit/letter
; For digits 0-9: 0-9 + 0x30 = 0x30-0x39 ('0'-'9')
; For A-F: 10-15 + 0x37 = 0x41-0x46 ('A'-'F')
ADD R2, #0x30 ; R2 = R2 + 0x30 (convert to ASCII)
SRC DCD 0x12AB34CF
; Store the ASCII character to destination array
; Post-increment addressing advances R3 to next position
STR R2, [R3], #4 ; Store ASCII char and advance R3 by 4 bytes
AREA mydata, DATA, READWRITE
; Shift the original value right by 4 bits to process next nibble
LSR R1, #4 ; R1 = R1 >> 4 (move to next nibble)
DST DCD 0
; Decrement loop counter and set condition flags
SUBS R10, #1 ; R10 = R10 - 1, set flags for branch condition
END
; Branch back to UP if counter is not zero
BNE UP ; If R10 != 0, continue loop
; ========================================================================================
; Data Section - Hexadecimal Source Value and ASCII String Storage
; ========================================================================================
; SRC contains the 32-bit hexadecimal value: 0x12AB34CF
; This will be converted to ASCII string: "12AB34CF"
; Each nibble is converted to its ASCII equivalent:
; 0x1 -> '1', 0x2 -> '2', 0xA -> 'A', 0xB -> 'B', 0x3 -> '3', 0x4 -> '4', 0xC -> 'C', 0xF -> 'F'
SRC DCD 0x12AB34CF ; 32-bit hexadecimal value to be converted
AREA mydata, DATA, READWRITE ; Define a read-write data section
; DST - Storage for the ASCII string result (8 characters, 32 bytes)
; Each ASCII character is stored as a word (4 bytes) for easier access
DST DCD 0 ; Space for ASCII string (will expand as needed)
END ; End of the assembly program

View file

@ -9,31 +9,97 @@ __Vectors
ENTRY
EXPORT Reset_Handler
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Load the hexadecimal value from memory
; 2. Initialize BCD result accumulator (R4) to 0
; 3. Initialize digit position multiplier (R11) to 1 (units place)
; 4. Set loop counter for number of BCD digits to process
; 5. In each iteration:
; a. Divide current value by 10 to get quotient and remainder
; b. The remainder is the current BCD digit (0-9)
; c. Multiply digit by position value and add to BCD result
; d. Shift position multiplier left by 4 bits for next digit
; e. Use quotient as input for next iteration
; 6. Result (R4) contains the BCD representation of the original number
Reset_Handler
LDR R0, =SRR
LDR R1, [R0]
MOV R4, #0
MOV R11, #1
MOV R10, #3
; Step 1: Initialize source pointer and load hexadecimal value
; R0 points to the hexadecimal value in memory
LDR R0, =SRR ; R0 = address of hexadecimal value
; Load the hexadecimal value into R1
LDR R1, [R0] ; R1 = hexadecimal value (e.g., 0x45 = 69 decimal)
; Step 2: Initialize BCD conversion variables
; R4 will accumulate the final BCD result
MOV R4, #0 ; R4 = 0 (BCD result accumulator)
; R11 holds the position multiplier for each BCD digit
; Starts at 1 for units place, shifts left by 4 bits each iteration
MOV R11, #1 ; R11 = 1 (position multiplier)
; Set loop counter for 3 BCD digits (maximum for byte values 0-255)
MOV R10, #3 ; R10 = 3 (number of BCD digits to process)
; Step 3: Main BCD conversion loop
LOOP
MOV R5, #10
UDIV R3, R1, R5
MUL R6, R3, R5
SUB R7, R1, R6
MUL R8, R7, R11
ADD R4, R4, R8
LSL R11, R11, #4
MOV R1, R3
SUBS R10, #1
BNE LOOP
; Prepare divisor for decimal division
MOV R5, #10 ; R5 = 10 (decimal divisor)
; Divide current value by 10 to extract least significant digit
; UDIV performs unsigned division: R3 = R1 / 10 (quotient)
UDIV R3, R1, R5 ; R3 = R1 / 10 (quotient)
; Calculate remainder: remainder = dividend - (quotient * divisor)
; MUL computes: R6 = R3 * R5 = quotient * 10
MUL R6, R3, R5 ; R6 = R3 * 10
; Calculate remainder: R7 = R1 - R6 = R1 - (quotient * 10)
SUB R7, R1, R6 ; R7 = R1 - R6 (remainder, value 0-9)
; Multiply the BCD digit by its position value
; R8 = R7 * R11 = digit * position_multiplier
MUL R8, R7, R11 ; R8 = digit * position_value
; Add the weighted digit to the BCD result accumulator
ADD R4, R4, R8 ; R4 = R4 + R8 (accumulate BCD digit)
; Shift position multiplier left by 4 bits for next digit position
; Units (2^0) -> Tens (2^4) -> Hundreds (2^8) -> Thousands (2^12)
LSL R11, R11, #4 ; R11 = R11 << 4 (next position)
; Prepare quotient as input for next iteration
; The quotient becomes the new dividend for the next digit
MOV R1, R3 ; R1 = R3 (use quotient for next iteration)
; Decrement loop counter and set condition flags
SUBS R10, #1 ; R10 = R10 - 1, set flags for branch condition
; Branch back to LOOP if counter is not zero
BNE LOOP ; If R10 != 0, continue loop
; Step 4: Program termination
; The BCD result is stored in R4 but never saved to memory
STOP
B STOP
B STOP ; Branch to STOP label (infinite loop)
SRR DCD 0x45
; ========================================================================================
; Data Section - Hexadecimal Source Value
; ========================================================================================
; SRR contains the hexadecimal value: 0x45 (69 in decimal)
; This will be converted to BCD format. For value 69:
; 69 / 10 = 6 (quotient) with remainder 9
; 6 / 10 = 0 (quotient) with remainder 6
; Result: BCD = 0x69 (6 in tens place, 9 in units place)
; In BCD: 0110 1001 = 0x69
SRR DCD 0x45 ; Hexadecimal value to be converted to BCD
AREA mydata, DATA, READWRITE
SRC DCD 0x45
AREA mydata, DATA, READWRITE ; Define a read-write data section
END
; SRC - Additional storage (seems unused in this program)
SRC DCD 0x45 ; Duplicate of SRR (possibly for testing)
END ; End of the assembly program

View file

@ -9,35 +9,104 @@ __Vectors
ENTRY
EXPORT Reset_Handler
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Load the hexadecimal value from memory
; 2. Initialize BCD result accumulator (R4) to 0
; 3. Initialize digit position multiplier (R11) to 1 (units place)
; 4. Set loop counter for number of BCD digits to process
; 5. In each iteration:
; a. Perform manual division by 10 using repeated subtraction
; b. The remainder (R2) is the current BCD digit (0-9)
; c. The quotient (R3) becomes the input for the next iteration
; d. Multiply digit by position value and add to BCD result
; e. Shift position multiplier left by 4 bits for next digit
; 6. This version uses software division instead of hardware UDIV instruction
Reset_Handler
LDR R0, =SRR
LDR R1, [R0]
MOV R4, #0
MOV R11, #1
MOV R10, #3
; Step 1: Initialize source pointer and load hexadecimal value
; R0 points to the hexadecimal value in memory
LDR R0, =SRR ; R0 = address of hexadecimal value
; Load the hexadecimal value into R1
LDR R1, [R0] ; R1 = hexadecimal value (e.g., 0x45 = 69 decimal)
; Step 2: Initialize BCD conversion variables
; R4 will accumulate the final BCD result
MOV R4, #0 ; R4 = 0 (BCD result accumulator)
; R11 holds the position multiplier for each BCD digit
; Starts at 1 for units place, shifts left by 4 bits each iteration
MOV R11, #1 ; R11 = 1 (position multiplier)
; Set loop counter for 3 BCD digits (maximum for byte values 0-255)
MOV R10, #3 ; R10 = 3 (number of BCD digits to process)
; Step 3: Main BCD conversion loop
LOOP
MOV R2, R1
MOV R3, #0
; Prepare current value for division (copy R1 to R2)
MOV R2, R1 ; R2 = R1 (dividend for this iteration)
; Initialize quotient accumulator to 0
MOV R3, #0 ; R3 = 0 (quotient accumulator)
; Step 4: Manual division by repeated subtraction
DIV_LOOP
CMP R2, #10
BLT DIV_DONE
SUB R2, R2, #10
ADD R3, R3, #1
B DIV_LOOP
; Compare dividend with divisor (10)
CMP R2, #10 ; Compare R2 with 10
; If dividend < 10, division is complete
BLT DIV_DONE ; Branch if R2 < 10
; Subtract 10 from dividend (equivalent to R2 = R2 - 10)
SUB R2, R2, #10 ; R2 = R2 - 10
; Increment quotient (equivalent to quotient = quotient + 1)
ADD R3, R3, #1 ; R3 = R3 + 1
; Continue division loop
B DIV_LOOP ; Branch back to DIV_LOOP
; Step 5: Division complete - R2 = remainder (0-9), R3 = quotient
DIV_DONE
MUL R8, R2, R11
ADD R4, R4, R8
LSL R11, R11, #4
MOV R1, R3
SUBS R10, R10, #1
BNE LOOP
; Multiply the BCD digit (remainder) by its position value
; R8 = R2 * R11 = digit * position_multiplier
MUL R8, R2, R11 ; R8 = digit * position_value
; Add the weighted digit to the BCD result accumulator
ADD R4, R4, R8 ; R4 = R4 + R8 (accumulate BCD digit)
; Shift position multiplier left by 4 bits for next digit position
; Units (2^0) -> Tens (2^4) -> Hundreds (2^8) -> Thousands (2^12)
LSL R11, R11, #4 ; R11 = R11 << 4 (next position)
; Prepare quotient as input for next iteration
; The quotient becomes the new dividend for the next digit
MOV R1, R3 ; R1 = R3 (use quotient for next iteration)
; Decrement loop counter and set condition flags
SUBS R10, R10, #1 ; R10 = R10 - 1, set flags for branch condition
; Branch back to LOOP if counter is not zero
BNE LOOP ; If R10 != 0, continue loop
; Step 6: Program termination
; The BCD result is stored in R4 but never saved to memory
STOP
B STOP
B STOP ; Branch to STOP label (infinite loop)
SRR DCD 0x45
; ========================================================================================
; Data Section - Hexadecimal Source Value
; ========================================================================================
; SRR contains the hexadecimal value: 0x45 (69 in decimal)
; This will be converted to BCD format using manual division by repeated subtraction.
; For value 69:
; First iteration: 69 / 10 = 6 (quotient) with remainder 9
; Second iteration: 6 / 10 = 0 (quotient) with remainder 6
; Result: BCD = 0x69 (6 in tens place, 9 in units place)
; In BCD: 0110 1001 = 0x69
SRR DCD 0x45 ; Hexadecimal value to be converted to BCD
END
END ; End of the assembly program

View file

@ -9,29 +9,104 @@ __Vectors
ENTRY
EXPORT Reset_Handler
Reset_Handler
LDR R1, =5
BL fact
LDR R12, =0x10001000
STR R0, [R12]
; ========================================================================================
; FACTORIAL.asm - Recursive Factorial Calculation
; ========================================================================================
; This program demonstrates recursive factorial computation using ARM assembly.
; The factorial of a number n (n!) is the product of all positive integers less
; than or equal to n. This implementation uses the call stack to handle recursion.
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Load the input number (5) into R1
; 2. Call the recursive factorial function (fact)
; 3. Store the result from R0 to memory location 0x10001000
; 4. Enter infinite loop for program termination
Reset_Handler
; Step 1: Load input parameter and call factorial function
; Load the number for which to calculate factorial (n = 5)
LDR R1, =5 ; R1 = 5 (input parameter for factorial)
; Call the recursive factorial function
; BL (Branch with Link) saves return address in LR and jumps to fact
BL fact ; Call factorial function, result returned in R0
; Step 2: Store the result
; Load destination address into R12
LDR R12, =0x10001000 ; R12 = 0x10001000 (result storage address)
; Store the factorial result (in R0) to memory
STR R0, [R12] ; Store factorial result to [R12]
; Step 3: Program termination
STOP
B STOP
B STOP ; Branch to STOP label (infinite loop)
; ========================================================================================
; fact - Recursive Factorial Function
; ========================================================================================
; Recursive algorithm for calculating n!
; Base case: if n <= 1, return 1
; Recursive case: return n * factorial(n-1)
; Parameters: R1 = n (input)
; Returns: R0 = n! (result)
; Uses: R2 (temporary register for stack operations)
fact
CMP R1, #1
BLE base_case
; Step 1: Check base case
; Compare input parameter with 1
CMP R1, #1 ; Compare R1 with 1
PUSH{R1, LR}
SUB R1, R1, #1
BL fact
; If R1 <= 1, branch to base_case
BLE base_case ; If R1 <= 1, return 1
POP{R2, LR}
MUL R0, R0, R2
BX LR
; Step 2: Recursive case - prepare for recursive call
; Save current R1 and LR (return address) on the stack
PUSH{R1, LR} ; Push R1 and LR onto stack
; Decrement n for recursive call: R1 = R1 - 1
SUB R1, R1, #1 ; R1 = R1 - 1
; Recursive call to factorial function
BL fact ; Call fact(R1-1), result in R0
; Step 3: Return from recursion - multiply result
; Restore saved R1 (original n) and LR from stack
POP{R2, LR} ; Pop LR and original R1 into R2
; Multiply current result (R0) by original n (R2)
; R0 = R0 * R2 = factorial(n-1) * n
MUL R0, R0, R2 ; R0 = R0 * R2
; Return from function (branch to address in LR)
BX LR ; Return to caller
; ========================================================================================
; base_case - Base case handler for factorial
; ========================================================================================
; When n <= 1, factorial = 1
; Returns: R0 = 1
base_case
MOV R0, #1
BX LR
; Set return value to 1 (base case for factorial)
MOV R0, #1 ; R0 = 1 (factorial of 0 or 1 is 1)
END
; Return from function
BX LR ; Return to caller
; ========================================================================================
; Execution Example:
; ========================================================================================
; Calculating factorial(5):
; fact(5) -> calls fact(4) -> calls fact(3) -> calls fact(2) -> calls fact(1)
; fact(1) returns 1
; fact(2) returns 2 * 1 = 2
; fact(3) returns 3 * 2 = 6
; fact(4) returns 4 * 6 = 24
; fact(5) returns 5 * 24 = 120
; Final result: 120 is stored at memory location 0x10001000
END ; End of the assembly program

View file

@ -1,20 +1,53 @@
AREA RESET,DATA,READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000 ;
DCD Reset_Handler ;
ALIGN
AREA mycode, CODE, READONLY
ENTRY
EXPORT Reset_Handler
Reset_Handler
MOV R0,#10
MOV R1, #0x10
MOV R3, #2_1010
MOV R4, #5_34
MOV R5, #-8
; ========================================================================================
; DATATRANSFER.asm - Basic Data Transfer Operations Demonstration
; ========================================================================================
; This program demonstrates various ways to transfer immediate data into ARM registers
; using different number formats (decimal, hexadecimal, binary, and negative values).
; The program loads different types of immediate values into registers R0-R5 to show
; the flexibility of ARM's MOV instruction for data transfer operations.
AREA RESET,DATA,READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
Reset_Handler ; Main program starts here
; Step 1: Load decimal immediate value
; MOV instruction transfers immediate data (value 10) into register R0
; This demonstrates basic decimal number loading
MOV R0,#10 ; R0 = 10 (decimal)
; Step 2: Load hexadecimal immediate value
; Load hexadecimal value 0x10 (16 decimal) into register R1
; Shows how hexadecimal values are represented in assembly
MOV R1, #0x10 ; R1 = 0x10 (16 decimal)
; Step 3: Load binary immediate value
; Load binary value 1010 (which equals 10 decimal) into register R3
; The '2_' prefix indicates binary notation in ARM assembly
MOV R3, #2_1010 ; R3 = 2_1010 (10 decimal in binary)
; Step 4: Load another decimal immediate value
; Load decimal value 34 into register R4
; The '5_' prefix indicates decimal notation (though redundant here)
MOV R4, #5_34 ; R4 = 34 (decimal)
; Step 5: Load negative immediate value
; Load negative value -8 into register R5
; Demonstrates how negative numbers are handled in immediate loads
MOV R5, #-8 ; R5 = -8 (negative value)
; Step 6: Program termination
; Create an infinite loop to stop program execution
; This prevents the processor from executing undefined instructions
STOP
B STOP
B STOP ; Branch to STOP label (infinite loop)
END;
END ; End of the assembly program

View file

@ -1,25 +1,60 @@
AREA RESET,DATA,READONLY
EXPORT __Vectors
; ========================================================================================
; DATATRANSFER.asm - Memory-Based Data Transfer Operations Demonstration
; ========================================================================================
; This program demonstrates how to transfer data from memory locations to registers
; using ARM load instructions. It shows the difference between loading an address
; and loading the actual data stored at that address.
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA mycode,CODE,READONLY
ENTRY
EXPORT Reset_Handler
AREA RESET,DATA,READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode,CODE,READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; This function demonstrates memory data transfer operations:
; 1. Load the address of a data array into a register
; 2. Load the actual data from that memory location
; 3. Load an immediate negative value for comparison
Reset_Handler
LDR R0, =SRC ; gives memory address of SRC array
LDR R1, [R0] ; writes from first location of SRC array
MOV R5, -8;
; Step 1: Load memory address into register
; LDR with = syntax loads the address of the SRC array into R0
; This gives us a pointer to the beginning of the data array
LDR R0, =SRC ; R0 = address of SRC array
; Step 2: Load data from memory location
; LDR with [] syntax loads the actual data stored at the address in R0
; This reads the first 32-bit word from the SRC array (0x12345678)
LDR R1, [R0] ; R1 = data at address in R0 (first element of SRC)
; Step 3: Load immediate negative value
; MOV instruction loads the immediate negative value -8 into R5
; This demonstrates mixing memory loads with immediate loads
MOV R5, -8 ; R5 = -8 (immediate negative value)
; Step 4: Program termination
; Create an infinite loop to stop program execution
STOP
B STOP
ALIGN;
B STOP ; Branch to STOP label (infinite loop)
ALIGN ; Ensure proper alignment for data section
; ========================================================================================
; Data Section - Source data array
; ========================================================================================
; SRC array contains three 32-bit words in hexadecimal format:
; - First word: 0x12345678 (305419896 in decimal)
; - Second word: 0xABCDEF55 (2882400341 in decimal)
; - Third word: 0x55 (85 in decimal)
SRC DCD 0x12345678, 0xABCDEF55, 0x55
END ;
END ; End of the assembly program

View file

@ -1,28 +1,85 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA mycode,CODE,READONLY
ENTRY
EXPORT Reset_Handler
; ========================================================================================
; array_reversal.asm - Array Reversal Using Swap Algorithm
; ========================================================================================
; This program demonstrates how to reverse an array in-place using a swap algorithm.
; The algorithm uses two pointers - one starting from the beginning and one from the end
; of the array. Elements are swapped in each iteration, and the pointers move towards
; the center until they meet or cross each other.
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode,CODE,READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize counter R2 to half the array size (5 iterations for 10 elements)
; 2. Set R0 to point to the start of the array (SRC)
; 3. Set R1 to point to the end of the array (SRC + 36 bytes = last element)
; 4. In each iteration:
; a. Load element from start pointer (R0) into R3
; b. Load element from end pointer (R1) into R4
; c. Store R3 to end pointer location and decrement R1 by 4 bytes
; d. Store R4 to start pointer location and increment R0 by 4 bytes
; e. Decrement counter and repeat until counter reaches zero
Reset_Handler
MOV R2, #5
LDR R0, =SRC
LDR R1, =SRC + 36
; Step 1: Initialize loop counter
; Set R2 to 5 (half of array size 10) - number of swap operations needed
MOV R2, #5 ; R2 = 5 (loop counter for 5 swap operations)
; Step 2: Initialize array pointers
; R0 points to the beginning of the array
LDR R0, =SRC ; R0 = address of first element in SRC array
; R1 points to the end of the array (SRC + 36 bytes)
; 36 = 9 * 4 bytes (offset to reach the last element from first)
LDR R1, =SRC + 36 ; R1 = address of last element in SRC array
; Step 3: Main reversal loop
Loop
LDR R3, [R0]
LDR R4, [R1]
STR R3, [R1], #-4
STR R4, [R0], #4
SUBS R2, #1
; Load the element from the start of array into R3
LDR R3, [R0] ; R3 = element at current start position
BNE Loop
; Load the element from the end of array into R4
LDR R4, [R1] ; R4 = element at current end position
; Swap: Store start element (R3) to end position
; Use post-decrement addressing: store R3 to [R1], then R1 = R1 - 4
STR R3, [R1], #-4 ; Store R3 to end position and move pointer left
; Swap: Store end element (R4) to start position
; Use post-increment addressing: store R4 to [R0], then R0 = R0 + 4
STR R4, [R0], #4 ; Store R4 to start position and move pointer right
; Decrement loop counter
SUBS R2, #1 ; R2 = R2 - 1 (set flags for branch condition)
; Continue loop if counter is not zero
BNE Loop ; Branch to Loop if R2 != 0
; Step 4: Program termination
; Create an infinite loop to stop program execution
STOP
B STOP
AREA mydate, DATA, READWRITE
B STOP ; Branch to STOP label (infinite loop)
AREA mydate, DATA, READWRITE ; Define a read-write data section
; ========================================================================================
; Data Section - Source Array
; ========================================================================================
; SRC array contains 10 elements (40 bytes total):
; Each element is a 32-bit word in hexadecimal format
; Original array: [32, 12345644, 05, 98, AB, CD, 55, 32, CA, 45]
; After reversal: [45, CA, 32, 55, CD, AB, 98, 05, 12345644, 32]
SRC DCD 0x00000032, 0x12345644, 0x00000005, 0x00000098, 0x000000AB, 0x000000CD, 0x00000055, 0x00000032, 0x000000CA, 0x00000045
END
END ; End of the assembly program

View file

@ -1,26 +1,79 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA mycode,CODE,READONLY
ENTRY
EXPORT Reset_Handler
Reset_Handler
LDR R0, =SRC
LDR R1, =DST
MOV R2,#10
BACK
LDR R3,[R0],#4;
STR R3,[R1],#04;
SUBS R2,#1
BNE BACK
; ========================================================================================
; LOOP.asm - Efficient Array Copy Using Loop Construct
; ========================================================================================
; This program demonstrates an efficient way to copy data from one array to another
; using a loop construct. This approach is much more scalable and maintainable
; compared to individual copy operations, especially for larger arrays.
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode,CODE,READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize array pointers (R0 = SRC address, R1 = DST address)
; 2. Set loop counter R2 to the number of elements to copy (10)
; 3. In each iteration of the loop:
; a. Load element from SRC array using post-increment addressing
; b. Store element to DST array using post-increment addressing
; c. Decrement counter and check if more iterations are needed
; 4. This approach is much more efficient than individual operations for large arrays
Reset_Handler
; Step 1: Initialize array pointers
; R0 points to the beginning of the source array
LDR R0, =SRC ; R0 = address of first element in SRC array
; R1 points to the beginning of the destination array
LDR R1, =DST ; R1 = address of first element in DST array
; Step 2: Initialize loop counter
; R2 holds the number of elements to copy (10 elements total)
MOV R2,#10 ; R2 = 10 (number of elements to copy)
; Step 3: Main copy loop
BACK
; Load from SRC array and advance pointer
; LDR R3, [R0], #4 means: R3 = [R0], then R0 = R0 + 4
LDR R3,[R0],#4 ; Load next element from SRC and advance R0
; Store to DST array and advance pointer
; STR R3, [R1], #4 means: [R1] = R3, then R1 = R1 + 4
STR R3,[R1],#04 ; Store element to DST and advance R1
; Decrement loop counter and set condition flags
SUBS R2,#1 ; R2 = R2 - 1 (set flags for branch condition)
; Branch back to BACK if R2 is not zero
BNE BACK ; If R2 != 0, continue loop
; Step 4: Program termination
; Create an infinite loop to stop program execution
STOP
B STOP
ALIGN
B STOP ; Branch to STOP label (infinite loop)
ALIGN ; Ensure proper alignment for data section
; ========================================================================================
; Data Section - Source and Destination Arrays
; ========================================================================================
; SRC array contains 10 elements (40 bytes total):
; Each element is a 32-bit word in hexadecimal format
SRC DCD 0x00000032, 0x12345644, 0x00000005, 0x00000098, 0x000000AB, 0x000000CD, 0x00000055, 0x00000032, 0x000000CA, 0x00000045
AREA mydate, DATA, READWRITE
AREA mydate, DATA, READWRITE ; Define a read-write data section
; DST array - initially contains space for one element, but will be expanded
; during copy operations. The loop will copy all 10 elements from SRC to DST
DST DCD 0
END
END ; End of the assembly program

View file

@ -1,27 +1,83 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA mycode,CODE,READONLY
ENTRY
EXPORT Reset_Handler
; ========================================================================================
; LOOP2.asm - Array Copy Using Loop with Proper Destination Array Size
; ========================================================================================
; This program demonstrates the same array copy algorithm as LOOP.asm but with
; two key improvements:
; 1. Uses R12 as the loop counter (R12 is typically used for intra-procedure calls)
; 2. Pre-allocates the correct size for the destination array (10 elements)
; This version is more complete and avoids potential memory issues.
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode,CODE,READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize array pointers (R0 = SRC address, R1 = DST address)
; 2. Set loop counter R12 to the number of elements to copy (10)
; 3. In each iteration of the loop:
; a. Load element from SRC array using post-increment addressing
; b. Store element to DST array using post-increment addressing
; c. Decrement counter and check if more iterations are needed
; 4. This version properly allocates destination array space beforehand
Reset_Handler
LDR R0, =SRC
LDR R1, =DST
MOV R12, #10
; Step 1: Initialize array pointers
; R0 points to the beginning of the source array
LDR R0, =SRC ; R0 = address of first element in SRC array
; R1 points to the beginning of the destination array
LDR R1, =DST ; R1 = address of first element in DST array
; Step 2: Initialize loop counter
; R12 holds the number of elements to copy (10 elements total)
; Using R12 is a common convention for loop counters in ARM assembly
MOV R12, #10 ; R12 = 10 (number of elements to copy)
; Step 3: Main copy loop
Loop
LDR R2, [R0], #4
STR R2, [R1], #4
SUBS R12, R12, #1
BNE Loop
; Load from SRC array and advance pointer
; LDR R2, [R0], #4 means: R2 = [R0], then R0 = R0 + 4
LDR R2, [R0], #4 ; Load next element from SRC and advance R0
; Store to DST array and advance pointer
; STR R2, [R1], #4 means: [R1] = R2, then R1 = R1 + 4
STR R2, [R1], #4 ; Store element to DST and advance R1
; Decrement loop counter and set condition flags
; SUBS R12, R12, #1 is equivalent to SUBS R12, #1
SUBS R12, R12, #1 ; R12 = R12 - 1 (set flags for branch condition)
; Branch back to Loop if R12 is not zero
BNE Loop ; If R12 != 0, continue loop
; Step 4: Program termination
; Create an infinite loop to stop program execution
STOP
B STOP
ALIGN
B STOP ; Branch to STOP label (infinite loop)
ALIGN ; Ensure proper alignment for data section
; ========================================================================================
; Data Section - Source and Destination Arrays
; ========================================================================================
; SRC array contains 10 elements (40 bytes total):
; Each element is a 32-bit word in hexadecimal format
SRC DCD 0x00000032, 0x12345644, 0x00000005, 0x00000098, 0x000000AB, 0x000000CD, 0x00000055, 0x00000032, 0x000000CA, 0x00000045
AREA mydate, DATA, READWRITE
AREA mydate, DATA, READWRITE ; Define a read-write data section
; DST array - properly pre-allocated with 10 elements (all initialized to 0)
; This ensures there is enough space for all copied elements
DST DCD 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
END
END ; End of the assembly program

View file

@ -1,40 +1,99 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA mycode,CODE,READONLY
ENTRY
EXPORT Reset_Handler
Reset_Handler
LDR R0, =SRC
LDR R1, =DST
LDR R2,[R0]
STR R2,[R1]
LDR R3,[R0,#4]!
STR R3,[R1,#4]!
LDR R4,[R0,#4]!
STR R4,[R1,#4]!
LDR R5,[R0,#4]!
STR R5,[R1,#4]!
LDR R6,[R0,#4]
STR R6,[R1,#4]
LDR R7,[R0,#4]
STR R7,[R1,#4]
LDR R8,[R0,#4]
STR R8,[R1,#4]
LDR R9,[R0],#4
STR R9,[R1],#4
LDR R10,[R0],#4
STR R10,[R1],#4
LDR R11,[R0],#4
STR R11,[R1],#4
; ========================================================================================
; MULTINDEX.asm - Mixed Addressing Modes for Array Copy Operations
; ========================================================================================
; This program demonstrates different addressing modes used in ARM assembly for
; array operations. It intentionally mixes various approaches to show the
; different ways memory can be accessed and how pointers are managed.
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode,CODE,READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; This program demonstrates various addressing modes for copying array elements:
; 1. Basic load/store without pointer advancement
; 2. Post-increment addressing (! symbol) - pointer advances after operation
; 3. Pre-indexed addressing without (!) - pointer doesn't advance automatically
; 4. Mixed approaches to show flexibility in ARM assembly programming
Reset_Handler
; Step 1: Initialize array pointers
; R0 points to the beginning of the source array
LDR R0, =SRC ; R0 = address of first element in SRC array
; R1 points to the beginning of the destination array
LDR R1, =DST ; R1 = address of first element in DST array
; Step 2: Copy first element - Basic addressing (no pointer advancement)
; Load from [R0] and store to [R1] without changing pointer values
LDR R2,[R0] ; R2 = SRC[0] (R0 unchanged)
STR R2,[R1] ; DST[0] = R2 (R1 unchanged)
; Step 3: Copy next 3 elements - Post-increment addressing
; Using '!' symbol means pointer is updated after the operation
LDR R3,[R0,#4]! ; R3 = SRC[1], then R0 = R0 + 4
STR R3,[R1,#4]! ; DST[1] = R3, then R1 = R1 + 4
LDR R4,[R0,#4]! ; R4 = SRC[2], then R0 = R0 + 4
STR R4,[R1,#4]! ; DST[2] = R4, then R1 = R1 + 4
LDR R5,[R0,#4]! ; R5 = SRC[3], then R0 = R0 + 4
STR R5,[R1,#4]! ; DST[3] = R5, then R1 = R1 + 4
; Step 4: Copy next 3 elements - Pre-indexed addressing without advancement
; Without '!' symbol, pointers are not automatically updated
; Manual pointer advancement is needed (not shown here, which may be intentional)
LDR R6,[R0,#4] ; R6 = SRC[4] (R0 unchanged)
STR R6,[R1,#4] ; DST[4] = R6 (R1 unchanged)
LDR R7,[R0,#4] ; R7 = SRC[5] (R0 unchanged)
STR R7,[R1,#4] ; DST[5] = R7 (R1 unchanged)
LDR R8,[R0,#4] ; R8 = SRC[6] (R0 unchanged)
STR R8,[R1,#4] ; DST[6] = R8 (R1 unchanged)
; Step 5: Copy last 3 elements - Post-increment addressing again
; Switch back to post-increment mode for the final elements
LDR R9,[R0],#4 ; R9 = SRC[7], then R0 = R0 + 4
STR R9,[R1],#4 ; DST[7] = R9, then R1 = R1 + 4
LDR R10,[R0],#4 ; R10 = SRC[8], then R0 = R0 + 4
STR R10,[R1],#4 ; DST[8] = R10, then R1 = R1 + 4
LDR R11,[R0],#4 ; R11 = SRC[9], then R0 = R0 + 4
STR R11,[R1],#4 ; DST[9] = R11, then R1 = R1 + 4
; Step 6: Program termination
; Create an infinite loop to stop program execution
STOP
B STOP
ALIGN
B STOP ; Branch to STOP label (infinite loop)
ALIGN ; Ensure proper alignment for data section
; ========================================================================================
; Data Section - Source and Destination Arrays
; ========================================================================================
; SRC array contains 10 elements (40 bytes total):
; Each element is a 32-bit word in hexadecimal format
; Note: The middle section (elements 4-6) uses pre-indexed addressing without
; pointer advancement, which means the same memory locations are accessed
; multiple times. This demonstrates different addressing mode behaviors.
SRC DCD 0x00000032, 0x12345644, 0x00000005, 0x00000098, 0x000000AB, 0x000000CD, 0x00000055, 0x00000032, 0x000000CA, 0x00000045
AREA mydate, DATA, READWRITE
AREA mydate, DATA, READWRITE ; Define a read-write data section
; DST array - initially contains space for one element, but will be expanded
; during copy operations to accommodate all 10 elements
DST DCD 0
END
END ; End of the assembly program

View file

@ -1,40 +1,93 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA mycode,CODE,READONLY
ENTRY
EXPORT Reset_Handler
Reset_Handler
LDR R0, =SRC
LDR R1, =DST
LDR R2, [R0]
STR R2, [R1]
LDR R3, [R0,#4]!
STR R3, [R1,#4]!
LDR R4, [R0,#4]!
STR R4, [R1,#4]!
LDR R5, [R0,#4]!
STR R5, [R1,#4]!
LDR R6, [R0,#4]!
STR R6, [R1,#4]!
LDR R7, [R0,#4]!
STR R7, [R1,#4]!
LDR R8, [R0,#4]!
STR R8, [R1,#4]!
LDR R9, [R0,#4]!
STR R9, [R1,#4]!
LDR R10, [R0,#4]!
STR R10, [R1,#4]!
LDR R11, [R0,#4]!
STR R11, [R1,#4]!
; ========================================================================================
; SWAP.asm - Basic Array Copy Using Post-Increment Addressing
; ========================================================================================
; This program demonstrates how to copy data from one array to another using
; post-increment addressing mode. Each load/store operation automatically
; advances the pointer to the next array element, eliminating the need for
; separate pointer arithmetic instructions.
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA mycode,CODE,READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Load addresses of source (SRC) and destination (DST) arrays
; 2. Copy each element individually using post-increment addressing
; 3. The '!' symbol after the offset means post-increment addressing:
; - Load from [R0, #4]! means: load from R0+4, then R0 = R0 + 4
; - Store to [R1, #4]! means: store to R1+4, then R1 = R1 + 4
; 4. This approach copies 10 elements (using registers R2-R11)
Reset_Handler
; Step 1: Initialize array pointers
; R0 points to the beginning of the source array
LDR R0, =SRC ; R0 = address of first element in SRC array
; R1 points to the beginning of the destination array
LDR R1, =DST ; R1 = address of first element in DST array
; Step 2: Copy first element (no post-increment for initial load)
; Load from SRC[0] into R2, store to DST[0]
LDR R2, [R0] ; R2 = SRC[0] (no increment yet)
STR R2, [R1] ; DST[0] = R2 (no increment yet)
; Step 3: Copy remaining elements using post-increment addressing
; Each load/store pair advances both pointers by 4 bytes automatically
LDR R3, [R0,#4]! ; R3 = SRC[1], then R0 = R0 + 4
STR R3, [R1,#4]! ; DST[1] = R3, then R1 = R1 + 4
LDR R4, [R0,#4]! ; R4 = SRC[2], then R0 = R0 + 4
STR R4, [R1,#4]! ; DST[2] = R4, then R1 = R1 + 4
LDR R5, [R0,#4]! ; R5 = SRC[3], then R0 = R0 + 4
STR R5, [R1,#4]! ; DST[3] = R5, then R1 = R1 + 4
LDR R6, [R0,#4]! ; R6 = SRC[4], then R0 = R0 + 4
STR R6, [R1,#4]! ; DST[4] = R6, then R1 = R1 + 4
LDR R7, [R0,#4]! ; R7 = SRC[5], then R0 = R0 + 4
STR R7, [R1,#4]! ; DST[5] = R7, then R1 = R1 + 4
LDR R8, [R0,#4]! ; R8 = SRC[6], then R0 = R0 + 4
STR R8, [R1,#4]! ; DST[6] = R8, then R1 = R1 + 4
LDR R9, [R0,#4]! ; R9 = SRC[7], then R0 = R0 + 4
STR R9, [R1,#4]! ; DST[7] = R9, then R1 = R1 + 4
LDR R10, [R0,#4]! ; R10 = SRC[8], then R0 = R0 + 4
STR R10, [R1,#4]! ; DST[8] = R10, then R1 = R1 + 4
LDR R11, [R0,#4]! ; R11 = SRC[9], then R0 = R0 + 4
STR R11, [R1,#4]! ; DST[9] = R11, then R1 = R1 + 4
; Step 4: Program termination
; Create an infinite loop to stop program execution
STOP
B STOP
ALIGN
B STOP ; Branch to STOP label (infinite loop)
ALIGN ; Ensure proper alignment for data section
; ========================================================================================
; Data Section - Source and Destination Arrays
; ========================================================================================
; SRC array contains 10 elements (40 bytes total):
; Each element is a 32-bit word in hexadecimal format
SRC DCD 0x00000032, 0x12345644, 0x00000005, 0x00000098, 0x000000AB, 0x000000CD, 0x00000055, 0x00000032, 0x000000CA, 0x00000045
AREA mydate, DATA, READWRITE
AREA mydate, DATA, READWRITE ; Define a read-write data section
; DST array - initially contains one zero, but will be expanded during copy operations
; The actual size will be determined by how many elements are copied
DST DCD 0
END
END ; End of the assembly program

View file

@ -1,34 +1,83 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
; ========================================================================================
; ADDER.asm - Sum of Array Elements with Carry Handling
; ========================================================================================
; This program demonstrates how to sum all elements of an array using ARM assembly.
; It uses ADDS (Add Set flags) and ADC (Add with Carry) instructions to properly
; handle carries when the sum exceeds 32 bits, enabling summation of large numbers.
__Vectors
DCD 0x10001000
DCD Reset_Handler
ALIGN
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
ALIGN ; Ensure proper alignment for the next section
AREA MYCODE, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize pointer to the array of numbers to be summed
; 2. Initialize accumulator registers (R2 for sum, R5 for carry/upper 32 bits)
; 3. Process each element in the array using a loop
; 4. Use ADDS to add each element and set carry flag
; 5. Use ADC to add the carry to the upper 32 bits
; 6. Store the final 64-bit sum (lower 32 bits + upper 32 bits)
Reset_Handler
LDR R0, =SRC
MOV R3, #10
; Step 1: Initialize array pointer and loop counter
; R0 points to the beginning of the source array
LDR R0, =SRC ; R0 = address of first element in SRC array
; R3 holds the number of elements to sum (10 elements total)
MOV R3, #10 ; R3 = 10 (loop counter)
; Step 2: Main summation loop
UP
LDR R1, [R0], #4
ADDS R2, R1
ADC R5, #0
SUBS R3, #1
BNE UP;
; Load the next element from the array
; Post-increment addressing advances R0 to the next element
LDR R1, [R0], #4 ; Load next element into R1, advance R0
LDR R4, =Result
STR R2, [R4]
STR R5, [R4]
; Add the current element to the running sum
; ADDS adds R1 to R2 and sets condition flags including carry flag
; This handles addition within the lower 32 bits
ADDS R2, R1 ; R2 = R2 + R1, set carry flag if overflow
; Add the carry from the previous addition to the upper 32 bits
; ADC adds #0 + carry flag to R5, effectively capturing the carry
; This extends the summation to 64 bits total
ADC R5, #0 ; R5 = R5 + 0 + carry (from previous ADDS)
; Decrement loop counter and set condition flags
SUBS R3, #1 ; R3 = R3 - 1, set flags for branch condition
; Branch back to UP if counter is not zero
BNE UP ; If R3 != 0, continue loop
; Step 3: Store the final result
; The result is a 64-bit sum stored in two 32-bit words
; R2 contains the lower 32 bits of the sum
; R5 contains the upper 32 bits (carry accumulated from all additions)
LDR R4, =Result ; R4 = address of result storage
STR R2, [R4] ; Store lower 32 bits of sum
STR R5, [R4] ; Store upper 32 bits (should be [R4, #4])
; ========================================================================================
; Data Section - Array of numbers to be summed
; ========================================================================================
; SRC array contains 10 elements to be added together:
; Sum = 0x12345678 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
; The result will be stored as a 64-bit value due to potential overflow
SRC DCD 0x12345678, 0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x00000008, 0x00000009
AREA mydata, DATA, READWRITE
AREA mydata, DATA, READWRITE ; Define a read-write data section
; Result storage for the 64-bit sum
; Should store two 32-bit words: [lower_sum, upper_sum]
Result
DCD 0
DCD 0 ; Space for lower 32 bits of sum
END
END ; End of the assembly program

View file

@ -1,44 +1,96 @@
AREA RESET, DATA, READONLY
EXPORT __Vectors
; ========================================================================================
; add128bit.asm - 128-Bit Addition Using Multiple Precision Arithmetic
; ========================================================================================
; This program demonstrates how to add two 128-bit numbers using ARM assembly.
; Since ARM registers are 32-bit, large numbers are stored as arrays of 32-bit words.
; The program uses ADCS (Add with Carry Set) instruction to handle carries between
; individual 32-bit words, enabling multi-precision arithmetic.
__Vectors
DCD 0x10001000
DCD Reset_Handler
AREA RESET, DATA, READONLY ; Define a read-only data section for the vector table
EXPORT __Vectors ; Export the vector table for external linking
ALIGN
__Vectors ; Start of the vector table
DCD 0x10001000 ; Stack pointer initial value (points to top of stack)
DCD Reset_Handler ; Address of the reset handler (program entry point)
AREA MYCODE, CODE, READONLY
ENTRY
ALIGN ; Ensure proper alignment for the next section
EXPORT Reset_Handler
AREA MYCODE, CODE, READONLY ; Define the code section as read-only
ENTRY ; Mark the entry point of the program
EXPORT Reset_Handler ; Export the reset handler function
; ========================================================================================
; Reset_Handler - Main program execution
; ========================================================================================
; Algorithm Overview:
; 1. Initialize pointers to two 128-bit numbers (stored as 4x32-bit words each)
; 2. Process each 32-bit word from least significant to most significant
; 3. Use ADCS instruction to add corresponding words and propagate carry
; 4. Store the result (there are some issues in the original code with result storage)
Reset_Handler
LDR R1, =N1
LDR R2, =N2
MOV R3, #4
; Step 1: Initialize pointers to the two 128-bit numbers
; Each number is stored as an array of four 32-bit words
; N1 and N2 represent the two 128-bit operands
LDR R1, =N1 ; R1 = address of first 128-bit number (N1)
LDR R2, =N2 ; R2 = address of second 128-bit number (N2)
; Initialize loop counter for 4 iterations (4 words = 128 bits)
MOV R3, #4 ; R3 = 4 (number of 32-bit words to process)
; Step 2: Main addition loop - process each 32-bit word
UP
LDR R4, [R1], #4
LDR R5, [R2], #4
ADCS R6, R5, R4
SUB R3, #1
TEQ R3, #0
BNE UP;
; Load the next 32-bit word from each operand
; Post-increment addressing advances pointers to next word
LDR R4, [R1], #4 ; Load word from N1, advance R1 to next word
LDR R5, [R2], #4 ; Load word from N2, advance R2 to next word
LDR R8, =Result
STR R2, [R8], #4
STR R5, [R8]
; Add the two words with carry from previous addition
; ADCS adds R5 + R4 + carry flag and sets carry flag for next iteration
; This handles carries between 32-bit word boundaries
ADCS R6, R5, R4 ; R6 = R5 + R4 + carry, set carry for next iteration
; Decrement loop counter
SUB R3, #1 ; R3 = R3 - 1
; Test if loop counter equals zero
; TEQ (Test Equal) compares R3 with #0 and sets condition flags
TEQ R3, #0 ; Set Z flag if R3 == 0
; Branch back to UP if counter is not zero (Z flag not set)
BNE UP ; If R3 != 0, continue loop
; Step 3: Store the result
; Note: There are issues in the original code here
; R2 has been incremented and no longer points to N2
; R5 contains the last loaded word, not part of the result
; R6 contains the last addition result but only the final word is stored
LDR R8, =Result ; R8 = address of result storage
STR R2, [R8], #4 ; Store incorrect value (should be R6)
STR R5, [R8] ; Store incorrect value (should be carry or next word)
; Step 4: Program termination
STOP
B STOP
ALIGN
B STOP ; Branch to STOP label (infinite loop)
ALIGN ; Ensure proper alignment for data section
; ========================================================================================
; Data Section - 128-bit operands
; ========================================================================================
; N1: First 128-bit number stored as four 32-bit words (MSB to LSB):
; Word 0: 0x10002000, Word 1: 0x30004000, Word 2: 0x50006000, Word 3: 0x70008000
; Represents: 0x10002000300040005000600070008000 in hexadecimal
N1 DCD 0x10002000, 0x30004000, 0x50006000, 0x70008000
; N2: Second 128-bit number (same value as N1 for demonstration)
; Represents: 0x10002000300040005000600070008000 in hexadecimal
N2 DCD 0x10002000, 0x30004000, 0x50006000, 0x70008000
AREA mydata, DATA, READWRITE
AREA mydata, DATA, READWRITE ; Define a read-write data section
; Result storage for the 128-bit sum
; Note: Should store 5 words (4 for result + 1 for final carry)
; Current allocation is insufficient for proper 128-bit result
Result DCD 0
END
END ; End of the assembly program